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- Interpolation is bad idea globally
-

Approach :

Have fif(x)
,
Xc

, -= Xn ,

Yi = f(xi), f pretty Smooth,

designed "locally, and you want

V = V(X) that "looks like "what

I should look like
---

f is measured exactly---



in t
a

.......

A : x. k --- kn = B
Want

ViV(X) such that

D VIxi)FY : for all iss ... n

& V as smooth as is reasonable

Answer (Cubic spline) choose

somet of

↑
a that

(A .B) sitI = af (derivitiesE



Lisoone(
-

and
X = B = Xn

(a)= S(u"(x) de
X= A = Xo

is minimized at VEI over all

functions in U

u cubic splines
-- -

X = Xc#gas guie



-

I Other measures. - -

-

---

Giver

( ~...
L W 11I 1

We see :

·

C
O

O

e e

O

L W 1 1 I



We see :

O ⑧

e e

O

·

C

O O-
O

L W W W I 1

Minimize Length(u)

xex-Tatu)" dxS
x= ta

over ufl

- Piecewise Linear



"Dirichlet integral
X = Xn

Energy
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