CPSC 303, March 18
Homework 8 to be assigned by Thursday, due Thursday,

March 28

Chapter 11: Splines

Wont $V(x)$ "near" $f(x)$

Spurts Car! not smooth...

these two parts have almost nothing to ∂_{0} with each other

$$
\left(x_{c}, y_{0}\right), \ldots \quad\left(x_{n}, y_{n}\right)
$$

n quite large
has little to
$\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$
du with

$$
\left(x_{n}, y, n\right)
$$

- Interpolation is bad ilea globally

Approach:
Have $f=f(\alpha), x_{c}, \ldots, x_{n}$, $y_{i}=f\left(x_{i}\right), f$ pretty smooth, designed "locally" and you want $V=V(x)$ that "lodes like "what f should leak like... f is measured exactly...

Thunk of

Wont!
$v=V(x)$ such that
(1) $\vee\left(x_{i}\right)=y_{i}$ for all $i=0, \ldots n$
(2) V as smooth as is reasonable

Answer (Cubic spline) choose

$$
\begin{aligned}
& V \text { se that some of } \\
& U=\left\{u \in C^{\text {derivatives }}(A, B)\right. \text { st. }
\end{aligned}
$$

is minimized at $v \in U$ over all furdiens in U

Other measures. -

We see:

We see:

Minimize LengtL (u)

$$
\int_{x=x_{0}}^{x=x_{n}} \sqrt{1+\left(u^{\prime}(x)\right)^{2}} d x
$$

over $u \in \mathcal{U}$
\leadsto Piearwisc Lineur
"Drichlet integral'

$$
\operatorname{Cnergy}_{1}(u)=\int_{x=x_{0}}^{x=x_{n}}\left(u^{\prime}(x)\right)^{2} d x
$$

Minimizes .- Claim... is yowl get $u=$ piecewise linear \because

Calculus of Variations:
Say: $(v \in \mathcal{V})$ sit.
v goes thru $\left(x_{i}, y_{i}\right), i=0_{j}, 2, n$ and Eargy, (u) is minimal..

take any $g \in C^{\infty}\left[x_{0}, x_{1}\right]$
sit.

$$
g\left(x_{0}\right)=0_{j} \quad g\left(x_{1}\right)=0
$$

Then
$V+g$ also goes thru $\left(x_{0}, y_{0}\right)$

$$
\left(x_{1}, y_{1}\right)
$$

Now lock at

$$
V_{\varepsilon}(x)=v(x)+\varepsilon g(x)
$$

$$
V_{\varepsilon}(x)=v(x)+\varepsilon g(x)
$$

Then: $v \in U$ mmimizes
Energy: $U \rightarrow \mathbb{R}$:

$$
\begin{aligned}
\operatorname{Energy~}(v) & \leqslant E_{\text {nergy }}\left(V_{\varepsilon}\right) \\
& =E_{\text {nergy }}(v+\varepsilon g)
\end{aligned}
$$

ε small $f_{\text {meybe }} E_{\text {nergy }}(v)+\varepsilon$.

Enersyli $(v t \varepsilon g) \leftarrow$ minimizad

$$
\begin{aligned}
& =\int_{x=x_{0}}^{x=x_{1}}\left(v^{\prime}(x)+\varepsilon g^{\prime}(x)\right)^{2} d x \\
& =\int_{\}}^{\left.\int\left(v^{\prime}\right)^{2}+2 \varepsilon\left(v^{\prime}\right)\left(g^{\prime}\right)+\varepsilon^{2}\left(g^{\prime}\right)^{2}\right)} \\
& =E_{v a r g y}(v) \\
& +\varepsilon \underbrace{\int 2\left(v^{\prime}\right)\left(g^{\prime}\right) d x}+\varepsilon^{2} \underbrace{}_{\text {obanted }}
\end{aligned}
$$ Implies must be 0

$$
\begin{aligned}
& \text { Energy, }(v+\varepsilon g) \\
& =E^{\text {Energy, }(v)} \\
& +\varepsilon \underbrace{\int_{x=x_{0}}^{x} 2\left(v^{\prime}(x)\right)\left(g^{\prime}(x)\right) d x}_{x=x_{n}} \\
& +\varepsilon^{2} \int_{\int_{x=x_{0}}^{x=x_{n}}\left(g^{\prime}(x)\right)^{2} d x} \\
& =a_{y}+\varepsilon(b)+\varepsilon^{2}(c) t \\
& \Rightarrow b=0 \Rightarrow \int_{x=x_{0}}^{x=x_{1}} 2 v^{\prime}(x) g^{\prime}(x) d x \\
& \text { most }=0
\end{aligned}
$$

So for the bast"
"lowest energy." V,

$$
\int_{x=x_{0}}^{x=x_{1}} v^{\prime}(x) g^{\prime}(x) d x=0
$$

for andy g sot. $g\left(x_{0}\right)=g\left(x_{1}\right)=0$

$$
\begin{aligned}
& \int_{x=x_{0}}^{x=x_{n}} v^{\prime}(x) g^{\prime}(x) d x \\
& =\left.v^{\prime}(x) g(x)\right|_{x=x_{0}} ^{x=x_{n}}-\int_{x=x_{0}}^{x=x_{n}} v^{\prime \prime}(x) g(x) d x \\
& =\underbrace{x=x_{1}}_{=0} \\
& =\int_{x=x_{0}}^{v^{\prime \prime}(x)} g(x) d x \\
& m u s t ~ b e
\end{aligned}
$$

hence $V^{\prime \prime}(x)=0$
for all $x_{0}<x<X_{1}$?

$v^{\prime \prime} \partial_{c}$ near $\xi, x_{0}<\xi<x_{1}$
$\Longrightarrow V^{\prime \prime}(\xi)=0$ for all

$$
x_{0}<\xi<x_{1}
$$

$\Rightarrow \quad v$ is linear
fercom $x_{0} \rightarrow x_{1}$

If Energy (u) minimizel at $u=v$

$$
\begin{gathered}
\int v^{\prime \prime} g^{\prime \prime}=0 \\
\longrightarrow \int v^{\prime \prime \prime \prime} g=0 \\
v^{\prime \prime \prime \prime}=0 \Rightarrow v \text { cubic }
\end{gathered}
$$

