CPSC 303, Feb 14, 2024
Condition Numbers and

$$
\left[\begin{array}{cc}
1 & 2 \\
1 & 2+\varepsilon
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]
$$

$\left(x_{0}=2, x_{1}=2+\varepsilon\right)$ and similar
problems.
Handout:
cPS 303! What the Condition
Number Does and Dcesn't Tell Us

$$
[A \& G] \oint 4.2, \oint 5.8
$$

(1) $c_{c}+c_{1} 2=y_{0}$
(2) $c_{0}+c_{1}(2+\varepsilon)=y_{1}$

$$
\text { (2)-(1) } \quad \begin{aligned}
c_{1} \varepsilon & =y_{1}-y_{0} \\
c_{1} & =\frac{y_{1}-y_{0}}{\varepsilon}
\end{aligned}
$$

Why measurable sense is

$$
\left[\begin{array}{ll}
1 & 2 \\
1 & 2+c
\end{array}\right] \quad b c d ?
$$

Ans: It has a high condition number.

Norms of \mathbb{R}^{n}

$$
\begin{aligned}
\vec{x} & =\left(x_{1}, \ldots, x_{n}\right) \\
\|\vec{x}\| & =\|\vec{x}\|_{2} \\
\stackrel{\text { csval }}{=} & \sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} \\
& =\sqrt{\vec{x} \cdot \vec{x}}
\end{aligned}
$$

$$
\begin{aligned}
& \|\vec{x}\|_{p}=\left(|x|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p} \\
& 1 \leqslant p \leqslant \infty \\
& \|\vec{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\vec{x}\|_{p} \\
& \max _{i=1, \ldots n}\left|x_{i}\right|^{p} \leq \underbrace{\left|x_{1}\right|^{p}+\ldots r\left|x_{n}\right|^{p}} \\
& \underbrace{}_{\max \left|x_{i}\right| \leqslant\left(\max _{i=1 \ldots n}\left|x_{i}\right|^{p}\right) n})^{1 / p} \leqslant\left(\max \left|x_{i}\right|\right) h^{1 / p}
\end{aligned}
$$

So $p \rightarrow \infty \quad\|\vec{x}\|_{p} \rightarrow \max _{i}\left(\left|x_{i}\right|\right)$

$$
\|\vec{x}\|_{\infty} \text { or }
$$

$$
\|\vec{x}\|_{\max }
$$

Norm on $\mathbb{R}^{n}: \vec{x} \rightarrow \underbrace{\|\vec{x}\|}_{\text {non-negative }}$
(1) $\|\vec{x}\| \geq 0$ with equality iff $\vec{x}=0$
(2) $\|\alpha \vec{x}\|=|\alpha|\|\vec{x}\|, \quad \alpha \in \mathbb{R}$
(3) $\|\vec{x}+\vec{y}\| \leqslant\|\vec{x}\|+\|\vec{y}\|, \vec{x}, \vec{y} \in \mathbb{R}^{n}$

Is it obvious that

$$
\|\vec{x}\|_{p}
$$

then

$$
\|\vec{x}+\vec{y}\|_{p} \leq\|\vec{x}\|_{p}+\|\vec{y}\|_{p}
$$

for $\quad 1 \leq p \leq 60$
(2) but not far $0<p<1$

Rem: Mostly $p=1,2, \infty$

$$
\|\vec{x}\|_{1}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|
$$

Let A: men matrix, $\vec{x} \in \mathbb{R}^{n}, \quad A \vec{x} \in \mathbb{R}^{m}$

Define $\|A\|_{p}$ to be
(1) $\max _{\vec{x} \neq 0} \overbrace{\|\vec{x}\|_{p}}^{\|\vec{x}\|_{p}}$

OR
(2) $\max _{\|\vec{x}\|_{p}=1}\|A \vec{x}\|_{p}$
or
(3) Smallest $C \geq 0$ sit.

$$
\|A \vec{x}\|_{p} \leqslant C\|\vec{x}\|_{p}
$$

$$
\begin{aligned}
& \text { Eig. } A=\left[\begin{array}{lll}
d_{1} & & \\
& d_{2} & C \\
0 & \ddots & \\
0 & & d_{n}
\end{array}\right], \vec{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \\
& A \vec{x}=\left[\begin{array}{c}
d_{1} x_{1} \\
d_{2} x_{2} \\
\vdots \\
d_{n} x_{n}
\end{array}\right] \\
& \|A \vec{x}\|_{p}=\|\left(\left[\begin{array}{c}
d_{1} x_{1} \\
\vdots \\
d_{n} x_{n}
\end{array}\right] \|_{p}\right. \\
& \leq\binom{\max _{i=1, n}}{\left|d_{i}\right|}\left\|\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]\right\|_{p}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 0 \\
0 & -7
\end{array}\right]\left[\begin{array}{c}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-7
\end{array}\right]} \\
& \quad\left\|\left[\begin{array}{c}
0 \\
-7
\end{array}\right]\right\|_{p}=7\left\|\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\|_{p}
\end{aligned}
$$

So

$$
\begin{aligned}
& \quad\left\|\left\lvert\,\left(\begin{array}{cc}
2 & 0 \\
0 & -7
\end{array}\right)\right.\right\|_{p}=7 \\
& =\|[a]\|_{p}=|a| \quad a \in \mathbb{R}
\end{aligned}
$$

[a] $|x|$

$$
\begin{aligned}
& \|\left.\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\right|_{p}=|a| t|b| \\
& \text { all } l \leq p \leq \infty \\
& a, b>0 \\
& \quad\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=(a+b)\left[\begin{array}{l}
1 \\
1
\end{array}\right] . \\
& \left\|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\|_{2}=\infty
\end{aligned}
$$

Turns at

$$
\left||A|_{2}=\right.
$$

largest eigenvalue of $A A^{\top}$
$=$ largest singular value of A

Handout

$$
A=\left[\begin{array}{ll}
1 & 5 \\
3 & 9
\end{array}\right] \cdots-\cdots
$$

$$
\begin{aligned}
&\|A\|=\max _{\vec{x} \neq 0} \frac{\|A \vec{x}\|_{2}}{\|\vec{x}\|_{2}} \\
&=\max _{\vec{x} \neq 0} \sqrt{\frac{\|A \vec{x}\|_{2}^{2}}{\|\vec{x}\|_{2}^{2}}} \\
&=\sqrt{m_{\vec{x}} \neq c} \frac{(A \vec{x}) \cdot(A \vec{x})}{\vec{x} \cdot \vec{x}} \\
&(A \vec{x}) \cdot(A \vec{x})=(A \vec{x})^{\top}(A \vec{x}) \\
&=\vec{x}^{\top} A^{\top} A \vec{x}=\vec{x} \cdot\left(A^{\top} A \vec{x}\right)
\end{aligned}
$$

$$
\begin{aligned}
A & =\left[\begin{array}{ll}
1 & 3 \\
5 & 9
\end{array}\right] \\
A^{\top} A & =\left[\begin{array}{ll}
1 & 5 \\
3 & 9
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
5 & 9
\end{array}\right] \\
& =\left[\begin{array}{ll}
26 & 48 \\
48 & 90
\end{array}\right] \cdots
\end{aligned}
$$

Thm: If $A=A^{\top}, A$ is symmetrle

$$
\left|\left|A \|_{2}=\max _{1 \leq i \leq n}\right| \lambda_{i}\right|
$$

$$
\begin{aligned}
& \|\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right|_{\infty}(\ddots) \\
& =\max (|a|+|b|,|c|+|d|)
\end{aligned}
$$

Max
Entry
ir abs value

$$
\begin{aligned}
\left(\max \left(a_{i j} \mid\right)\right. & \leqslant\left(\left.|A|\right|_{p} \leqslant n\left(m c x\left|a_{i j}\right|\right)\right. \\
A & =\left[\begin{array}{ccc}
a_{11} & a_{n} & \ldots \\
\vdots & & a_{n} \\
a_{m 1} & a_{n j} & a_{m n}
\end{array}\right]
\end{aligned}
$$

$$
\left|\left|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right|\right|_{\mid}=\max (|a|+\phi c|,|b|+| d)
$$

$\|A\| \|_{\infty}=\max$ over all rows of the sura of absolute lues in the row

$$
\|\left. A\right|_{1} \quad=\quad-\quad-\quad-
$$

Say A is $n \times n$, and you've solving

$$
A \vec{x}=\vec{b}(w e n t)
$$

actually $A \frac{\Delta}{x}=\stackrel{\Delta}{b}$ (are doing)
$\widehat{\vec{b}}$ is your approximation to $\stackrel{\rightharpoonup}{b}$

$$
\stackrel{\rightharpoonup}{b}=\stackrel{\rightharpoonup}{b}+\stackrel{\rightharpoonup}{b}_{\text {error }}
$$

Theorem: Relative error in \vec{x} (when you actually find $\stackrel{\widehat{x}}{ })$ is

$$
\leqslant K(A)\left(\begin{array}{ll}
\text { relative error } \\
\text { in } \vec{b} & \text { when } \\
\text { ectuclly } & \text { measure } \\
\hat{\vec{b}}
\end{array}\right)
$$

where

$$
K(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}
$$

and relative error:

$$
\begin{aligned}
\operatorname{Rel}^{2} E_{p r o r}(\stackrel{\rightharpoonup}{b} & \widehat{\vec{b}})
\end{aligned}=\frac{\|\vec{b}-\widehat{\vec{b}}\|_{p}}{\|\vec{b}\|}
$$

$$
\begin{aligned}
& \text { Exempte: }\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right]=A \\
&\|A\|_{\infty}=1 \\
&\left\|A^{-1}\right\|_{\infty}=\left\|\left[\begin{array}{ll}
1 & 0 \\
0 & 1 / \varepsilon
\end{array}\right]\right\|^{2} \\
&=\| \varepsilon \\
& K_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \\
&=1 / \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon \rightarrow 0(\mathrm{bad}) \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{\varepsilon} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
x_{0} \\
x_{q}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
& =x_{0}=1 \\
& x_{1}=1 / \varepsilon \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon
\end{array}\right]\left[\begin{array}{l}
\hat{x}_{0} \\
\hat{x}_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1,001
\end{array}\right]}
\end{aligned}
$$

$$
\binom{x_{0}}{x_{1}}=\left[\begin{array}{c}
1 \\
1.001 / \varepsilon
\end{array}\right]
$$

