$\operatorname{CPSC} 3 C 3, \operatorname{Feb} 12,2024$
Today! !

- $\oint 10.2$ as general method
$-\oint\left(0.2 \quad\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\right.$
what happens "as $x_{1} \rightarrow x_{0}$ "
= Monomial Interpolation"

Real Paint:
$\oint 10.2$ [A eG] "What could possibly go wrong?
Ans: Condition number.

Recall:

$$
\left(x_{0}, 1,0\right),\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)
$$

$n+1$ points:
Model!

$$
p(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}
$$

Find $c_{c}, c_{1}, \ldots, c_{r}$ sit.

$$
p\left(x_{i}\right)=y_{i} \quad \text { fer } \quad i=0, \ldots, h
$$

Linear system for $C_{0,}, C_{1, \ldots}, C_{n}$

$$
c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2}+\ldots+c_{n} x_{0}^{n}=Y_{0}
$$

$$
\begin{aligned}
& c_{c}+c_{1} x_{n}+c_{2} x_{n}^{2}+\cdots+c_{n} x_{n}^{n}=Y_{n} \\
& {\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \ldots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} \\
\vdots & & \\
1 & x_{n} & x_{n}^{2} & \ldots+x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{n}
\end{array}\right]}
\end{aligned}
$$

Geverel Method.-

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)
$$

Model:

$$
\begin{aligned}
y_{i} & =f\left(x_{i}\right) \\
& =c_{0}\left(e^{1 / x_{i}}\right)+\left(c_{1} \sin \left(\cos \left(x_{i}^{3}\right)\right)\right. \\
& +c_{2} x_{i}^{5}
\end{aligned}
$$

(usually: pdy's, $\sin , \cos , e^{x}, \ln x$)

$$
f(x)=\overbrace{c_{0} g_{0}(x)+c_{1} g_{1}(x)+c_{2} g(x)}^{\text {Stillears anve fitting }}
$$

$$
\begin{gathered}
f\left(x_{0}\right)=y_{0} \\
c_{c} g_{0}\left(x_{0}\right)+c_{1} g_{1}\left(x_{0}\right)+c_{2} g\left(x_{0}\right)=y_{0} \\
\vdots \\
{\left[\begin{array}{ccc}
g_{0}\left(x_{0}\right) & g_{1}\left(x_{0}\right) & g_{2}\left(x_{0}\right) \\
g_{0}\left(x_{1}\right) & g_{2}\left(x_{1}\right) & g_{2}\left(x_{2}\right) \\
g_{0}\left(x_{2}\right) & g_{1}\left(x_{2}\right) & g_{2}\left(x_{2}\right)
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]}
\end{gathered}
$$

- is this matrix invertible?
- does the solution, assuming there is a unique, have some alternate forms

Rem: $f(x)=c_{0}+c_{1} x^{2}$

$$
\left(x_{0}, y_{0}\right), \quad\left(x_{1}, y_{1}\right)
$$

We want

$$
\begin{aligned}
& Y_{0}=c_{0}+C_{1}(-1)^{2} \\
& y_{1}=C_{0}+C_{1}(1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & (-1)^{2} \\
1 & 1^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
1 / 0 \\
1 / 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{c} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 / 2
\end{array}\right]}
\end{aligned}
$$

Try $f(x)=c_{0}+c_{1} x^{2}$

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right) \\
& \uparrow \\
& 1
\end{aligned}
$$

$$
\left(\begin{array}{cc}
\text { similurly } & \sin (x), \sin (2 x), \ldots \\
& \cos (x), \cos (2 x), \ldots
\end{array}\right)
$$

Pch,nomial Interpolation:
Q: What if $x_{1} \rightarrow x_{0}$,
e, g, x_{0} fixed, $x_{1}=x_{0}+\varepsilon$
E small (ma, be $\varepsilon \rightarrow 0$)

$$
\begin{aligned}
& =\left(x_{0}, y_{0}\right),\left(x_{1}=x_{0}+\varepsilon, y_{1}\right) \\
& p(x)=c_{c}+c_{1} x \\
& x_{c}=3:
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & x_{0} \\
1 & x_{1}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 3 \\
1 & 3+\varepsilon
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1}
\end{array}\right]} \\
& \varepsilon \rightarrow 0 \\
& {\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right] \backsim \begin{array}{c}
\therefore \\
\hdashline \\
1 \cdot(3+\varepsilon)
\end{array}} \\
& -1 \cdot 3 \\
& =\varepsilon
\end{aligned}
$$

$$
\left.\begin{array}{rl}
c_{0}+3 c_{1} & =y_{0} \\
c_{0}+(3+\varepsilon) c_{1} & =y_{1} \\
c_{0}+3 c_{1} & =y_{0} \\
\varepsilon c_{1} & =y_{1}-y_{0} \\
c_{1} & =\frac{y_{1}-y_{0}}{\varepsilon}(\therefore \\
\therefore
\end{array}\right)
$$

If $\left(3, y_{0}\right),\left(3+\varepsilon, y_{1}\right)$

coming from measwements maybe
$\left(3, y_{0}\right)$ is redly $\left(3, y_{0}(1 \pm 0.01)\right.$

$$
(1 \pm 1 \%)
$$

$$
\begin{aligned}
& \left(3+\varepsilon, y_{1}\right) \cdots \cdots\left(3, y_{1}(1 \pm 0,01)\right) \\
& A_{5} \quad \varepsilon \rightarrow 0 \quad\left(5 c_{1} y_{0}, y_{1} 00\right) \\
& c_{1}=\frac{y_{1}-y_{0}}{\varepsilon} \pm 1 \%_{0} \frac{y_{1}+1 / 0}{\varepsilon}
\end{aligned}
$$

2 ways
Imagine $\quad y_{0}=f(3)$

$$
y_{1}=f(3+\varepsilon)
$$

for some function f.
What happens to

$$
\left[\begin{array}{cc}
1 & 3 \\
1 & 3+\varepsilon
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
f(3) \\
f(3+\varepsilon)
\end{array}\right]
$$

As $\varepsilon \rightarrow 0 \ldots$

$$
C_{1}=\frac{1 / 9^{-1 / 0}}{\varepsilon}=\frac{f(3+\varepsilon)-f(3)}{\varepsilon}
$$

$A_{S} \varepsilon \rightarrow 0$

$$
C_{1}=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=f^{\prime}(3)
$$

$$
\begin{aligned}
& \text { A5 } \varepsilon \rightarrow 0 \quad c_{1} \rightarrow f^{\prime}(3) \\
& c_{0}+3 c_{1}=f(3) \\
& c_{0}=f(3)-3 c_{1} \\
& =f(3)-3 f^{\prime}(3)
\end{aligned}
$$

line to approximute

$$
\begin{aligned}
& c_{c}+c_{1} x \\
= & \left(f(3)-3 f^{\prime}(3)\right)+f^{\prime}(3) x \\
= & f(3)+(x-3) f^{\prime}(3)
\end{aligned}
$$

Whet cbout

$$
\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)
$$

$h \rightarrow 0 \ldots \ldots$

$x_{2}=4-h$ best parabol to 6,7

$$
\begin{aligned}
& f(4+h) \\
& =f(4)+h f^{\prime}(4)+\frac{h^{2}}{2} f^{\prime \prime}(4) \\
& \quad+O\left(h^{3}\right)\left(\begin{array}{c}
\text { assuming } f^{\prime \prime \prime} \\
\text { exist } \\
-
\end{array}\right) \\
& f(x)= \\
& f(4)+(x-4) f^{\prime}(4) \\
& \quad+\frac{1}{2}(x-4)^{2} f^{\prime \prime}(4)+ \\
& \quad+0\left((x-4)^{3}\right)
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & 4 & 4^{2} \\
1 & 4+5 h & \left(4+5 h^{2}\right. \\
1 & 4-h & (4-h)^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
f(4) \\
f(4+5 h \\
f(4-h)
\end{array}\right]
$$

shald get Teylor's thm
$+f^{\prime \prime}(4)$ bapprox with

$$
f(4), f(4+5 h), f(4-h)
$$

