CPSC 303, Feb 5, 2024

- 3 Handouts:
- Intro to ODE's
$\underset{\substack{\text { Apersbers } \\ R, B, C}}{-}$ Recurrence Relations \& $\left.\quad \begin{array}{l}\text { Finite Precision }\end{array}\right\}$ To
- Normal \& Subnormal

Numbers
Today! A bit more on $1^{\text {st }}$ two handouts

- Start Normal \& Subnormal Numbers

3-Term recurrence relations:

$$
\left.\begin{array}{l}
x_{n+2}=a x_{n+1}+b x_{n} \\
a, b \in \mathbb{R}, \quad \ldots x_{-1}, x_{c}, x_{1, \ldots} \\
b \neq 0 \quad\left(b=0, a \neq 0 \quad x_{n+2}=a x_{n+1}\right. \\
x_{n+1}=a x_{n}
\end{array}\right) .\left\{\begin{array}{l}
\left.\quad \begin{array}{l}
b=0
\end{array}\right)
\end{array}\right.
$$

Analog of $2^{\text {rd }}$ order $O D E$:

$$
\begin{aligned}
& F_{n+2}=F_{n+1}+F_{n} \\
& \vec{Y}_{n+1}=A \stackrel{Y}{n} \\
& \stackrel{\rightharpoonup}{y_{n+1}}=\left[\begin{array}{l}
F_{n+2} \\
F_{n+1}
\end{array}\right]=\left[\begin{array}{l}
F_{n+1}+F_{n} \\
F_{n+1}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
F_{n+1} \\
F_{n}
\end{array}\right] \\
& (F_{n}=0 \underbrace{}_{2}), F_{n+1}-a F_{n}=0 \Theta \\
& \text { kinda like } \underbrace{\left(F_{n+1}-F_{n}\right)}_{\text {kinda like }}=(a-1) F_{n}
\end{aligned}
$$

$$
\left\{\begin{aligned}
& \text { Interms of } \sigma \text {, } \\
& \Delta=\sigma-1 \\
&(\Delta x)_{n}=(\sigma-1)\left(x_{n}\right) \\
&=x_{n+1}-x_{n}
\end{aligned}\right.
$$

Last time:

$$
\begin{aligned}
& x_{n+2}-4 x_{n+1}+4 x_{n}=0 \\
& \left(\sigma^{2}-4 \sigma+4\right)\left(x_{n}\right)=0
\end{aligned}
$$

Guess $x_{n}=r^{n}$ is a solution...

$$
\begin{aligned}
& r^{2}-4 r+4=0 \\
& (r-2)^{2}=0, r=2,2 \\
& x_{n}=2^{n} \text { is a solution, } \\
& x_{r}=c_{1} 2^{n} \text {.. . . }
\end{aligned}
$$

Think of it ... $(r-2)(r-2-\varepsilon)=0$
\&>c!

$$
(\sigma-2)(\sigma-2-\varepsilon)\left(x_{n}\right)=0
$$

Then:

$$
x_{n}=c_{1} 2^{n}+c_{2}(2+\varepsilon)^{n}
$$

$$
\left(\begin{array}{l}
\text { Fix } \varepsilon>0, \text { have } x_{0}=3, x_{1}=-40, \\
x_{2}=x_{2}(\varepsilon), x_{3} \ldots \\
x_{21}(\varepsilon)=(\quad) x_{0}+() x_{1}
\end{array}\right.
$$

given x_{0}, x_{1}
$\begin{aligned} \text { Taking } \varepsilon \rightarrow 0, \quad x_{21}(0)= & -x_{0} \\ & +-x_{1}\end{aligned}$

Geneal solution to

$$
x_{n+2}-4 x_{n+1}+4 x_{n}=0
$$

if

$$
x_{n}=c_{1} 2^{n}+c_{2} \underbrace{n 2^{n}}_{\text {like }}
$$

Does this work?

$$
\begin{aligned}
(n+2) & 2^{n+2}-4(n+1) \cdot 2^{n+1} \\
& -42^{n} \stackrel{? ?}{=} 0
\end{aligned}
$$

Try this

$$
\begin{align*}
& (\sigma-2) \underbrace{(\sigma-2)\left(n 2^{n}\right)}_{(\sigma-2)\left(n 2^{n}\right)} \stackrel{?}{=} 0 \\
& =(n+1) 2^{n+1}-2\left(n 2^{n}\right) \\
& =2^{n}((n+1) 2-2 n) \\
& =2^{n}(2)
\end{align*}
$$

And $(\sigma-2)\left(2^{n}\right.$. cons $)=$

$$
\begin{aligned}
& \text { const }\left(2^{n+1}-2 \cdot 2^{n}\right)=0 \\
&=
\end{aligned}
$$

What about

$$
\begin{aligned}
& (\sigma-2)^{4}\left(x_{n}\right)=0 \\
& \begin{array}{c}
x_{n}=c_{1} 2^{n}+c_{2} n 2^{n} \\
+c_{3} n^{2} 2^{n}+c_{4} n^{3} 2^{n} \\
?
\end{array} \\
& \begin{array}{c}
(\sigma-2)\left(p(n) 2^{n}\right) \\
=
\end{array} 2^{n}(\text { poly of lower degree }
\end{aligned}
$$

$$
\begin{aligned}
& (\sigma-2)\left(n^{k} 2^{n}\right) \\
& =(n+1)^{k} 2^{n+1}-n^{k} 2^{n} \cdot 2 \\
& =2^{n+1}(\underbrace{\left.(n+1)^{k}-n^{k}\right)} \\
& =2^{n+1}\left(k n^{k-1}+\text { loner }\right)
\end{aligned}
$$

think of $x^{k}, k x^{k-1} \ldots$
like a derivative ...

Now:

$$
\left(\sigma-r_{1}\right)^{m_{1}} \ldots\left(\sigma-r_{k}\right)^{m_{k}}\left(x_{n}\right)=0
$$

we get

$$
x_{n}=p_{1}(n) r_{1}^{n}+\ldots+p_{k}(n) r_{k}^{n}
$$

where $\operatorname{deg}\left(p_{i}\right) \leqslant m_{k}-1$ eng.

$$
\begin{aligned}
& (\sigma-2)^{2}(\sigma-5)\left(x_{n}\right)=0 \\
& x_{n}=c_{1} 2^{n}+c_{2} n 2^{n}+c_{3} 5^{n}
\end{aligned}
$$

$$
\begin{aligned}
& x_{n+2}-4 x_{n+1}+4 x_{n}=0 \\
& \vec{y}_{n}=\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right] \\
& \vec{y}_{n+1}=\left[\begin{array}{c}
x_{n+2} \\
x_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]
\end{aligned}
$$

So if we look for eigenvalues:

$$
\begin{aligned}
& \operatorname{det}\left(\lambda \cdot I-\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right]\right) \\
= & \operatorname{det}\left[\begin{array}{cc}
\lambda-4 & 4 \\
-1 & \lambda
\end{array}\right]=(\lambda-4) \lambda+4=0
\end{aligned}
$$

$$
\begin{gathered}
\lambda^{2}-4 \lambda+4=0 \\
\lambda=2,2
\end{gathered}
$$

What if

$$
\begin{aligned}
A & =S\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] S^{-1} \\
& =2 \underbrace{S\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] S^{-1}}_{S^{-1}}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lod at } \lambda I-\left[\begin{array}{ll}
4 & -4 \\
1 & 0
\end{array}\right] \\
& \begin{aligned}
& \lambda=2 \\
&\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right] \\
&=\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right] \\
& A \vec{v}=2 \vec{v} \text {, then }\left[\begin{array}{cc}
-2 & 4 \\
-1 & 2
\end{array}\right] \vec{V}=0 \\
& \stackrel{\rightharpoonup}{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad\left(\left[\begin{array}{l}
r \\
1
\end{array}\right]\right)
\end{aligned}
\end{aligned}
$$

So $\left[\begin{array}{cc}4 & -4 \\ 1 & 0\end{array}\right]$ can't be diagonelized \ldots
Since $2 I-\left[b=\left[\begin{array}{cc}-2 & 4 \\ -1 & 2\end{array}\right]\right.$

$$
\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] ? ?
$$

$N . \quad \operatorname{Can} N \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
bot $N^{2}=\left[\begin{array}{ll}0 & c \\ 0 & 0\end{array}\right] ?$

We san N is nilpotent if $N^{k}=\left[\begin{array}{ll}c & 0 \\ c & 0\end{array}\right]$ for some

$$
\begin{aligned}
& k \geq 1 。 \\
& {\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]=2 \cdot I-\left[\begin{array}{c}
\text { motrrx } \\
\text { of } \\
\text { interst }
\end{array}\right]} \\
& =N=\text { nilpoint } \\
& {\left[\begin{array}{c}
\text { metrix } \\
\text { interest }
\end{array}\right]=2 \cdot I-N} \\
& {[\quad]^{k}=(2 \cdot I-N)^{k}=}
\end{aligned}
$$

$$
\begin{aligned}
& (2 I)^{k}+\binom{k}{1}(2 I)^{k-1}(-N) \\
& \quad+\binom{k}{2}(2 I)^{k-2} N^{k 2} 0 \\
& \\
& +\cdots \\
& =\cdots \\
& \quad+0
\end{aligned}
$$

Note: Correction to notes was made on Feb 12, indicated in red, thanks to Anon. Beaker on piazza.

