CPSC 303, Jan 31, 2024

- Recurrences:

General algorithm:

$$
\begin{aligned}
& F_{n+2}-F_{n-1}-F_{n}=0 \\
& \left(\sigma^{2}-\sigma-1\right)\left(F_{n}\right)=0 \\
& \text { S solve } r^{2}-r-1=0 \\
& \left(\sigma-\frac{1+\sqrt{5}}{2}\right)\left(\sigma-\frac{1-\sqrt{5}}{2}\right)\left(F_{n}\right)=0
\end{aligned}
$$

- ODEs with constant coefficients:

$$
\int \begin{aligned}
& y^{\prime \prime}-y^{\prime}-y=0 \\
& \left(\frac{d}{d t}-\frac{1+\sqrt{5}}{2}\right)\left(\frac{d}{d t}-\frac{1-\sqrt{5}}{2}\right) y=0
\end{aligned}
$$

- Multiple roots

Lest time:
(*) $F_{n+2}-E_{n+1}-E_{n}=0 \quad \forall n$
$\begin{aligned} \text { given } & F_{1} \leadsto F_{2}, F_{3}, \ldots .\end{aligned}$
also go backwods! $\begin{array}{ll}F_{1} & F_{0} \text { i } F_{-1}, F_{-2 \ldots}\end{array}$
we write (k) as

$$
\begin{aligned}
& \left(\left(\sigma^{2}-\sigma-1\right)(F)\right)_{n}=0 \\
& -\quad ? \\
& \sigma=\text { slnift operctor : } \\
& \quad(\sigma F)_{n}=F_{n+1}
\end{aligned}
$$

thimk of

$$
\begin{gathered}
\left(\cdots F_{-2} F_{-1} F_{0} F_{1} F_{2} \cdots \cdots\right. \\
\cdots(\sigma f)_{-1}(\sigma F)_{0}(\sigma f)_{1},
\end{gathered}
$$

Sc

$$
\begin{gathered}
\sigma:\left(\begin{array}{c}
\text { sequerces } \\
\text { indexed } \\
\text { over } \\
0,1,2, \ldots
\end{array}\right) \rightarrow\left(\begin{array}{c}
\text { sequerce } \\
\text { indace } \\
\text { ovr } \\
0,1,2, \ldots
\end{array}\right) \\
\sigma:\left(\begin{array}{c}
\text { sequerces } \\
\text { indexed } \\
\text { over } \\
0,1,2, \ldots
\end{array}\right) \rightarrow\left(\begin{array}{c}
\text { sequerce } \\
\text { induce } \\
\text { ovr } \\
-2,-1,0,1,2, \ldots
\end{array}\right)
\end{gathered}
$$

$\left(\sigma^{-1} f\right)_{n}=f_{n-1}$
if bi-infinite sequence

If you accept this definition (or some other)

$$
\begin{aligned}
& F_{n+2}-f_{n+1}-f_{n}=0(\forall n) \\
& \pi \\
& \left(\sigma^{2} f-\sigma f-f\right)_{n}=0\left(\forall_{n}\right)
\end{aligned}
$$

cr

$$
\left(\sigma^{2}-\sigma-1\right) F_{.}=O \text { sequence }
$$

Recipe: \Vdash

$$
r^{2}-r-1=0
$$

Solve...
get

$$
\begin{aligned}
& r=\frac{1 \pm \sqrt{5}}{2} \\
& \left(\sigma^{2}-\sigma-1\right) F=0
\end{aligned}
$$

\Uparrow

$$
\begin{aligned}
& \left(\sigma-\frac{1+\sqrt{5}}{2}\right)\left(\sigma-\frac{1-\sqrt{5}}{2}\right) f=0 \\
& \mathbb{4} \\
& \left(\sigma-\frac{1-\sqrt{5}}{2}\right)\left(\sigma-\frac{1+\sqrt{5}}{2}\right) F=0
\end{aligned}
$$

Guess ...

$$
F_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

$1,0,0^{2}, \sigma^{3}$ acts of funotions

$$
\begin{array}{cc}
\prod_{\text {or }} & \left\{c_{1}, 2, \ldots\right\} \rightarrow \mathbb{R} \\
\text { Id } & e_{1} g, h \mapsto F_{n} \\
& p(x)=p_{1}(x) p_{2}(x) \quad \text { (polynamids) }
\end{array}
$$

a so hure

$$
p(\sigma)=p_{1}(\sigma) p_{2}(\sigma)
$$

e.g.

$$
\begin{aligned}
& (\sigma-1)(\sigma-2) \\
= & \sigma^{2}-3 \sigma+2=(\sigma-2)(\sigma-1)
\end{aligned}
$$

Lock by comparisen?

$$
y^{\prime}=A_{y}
$$

generel soluter $y(t)=C e^{A(t)}$. i.e. $y(t)=C e^{\AA_{t}}$, it sctisfies

$$
\frac{d}{d t} y=A y
$$

or

$$
\left(\frac{d}{d t}-A\right) y=0
$$

Say yel have

$$
y^{\prime \prime}-y^{\prime}-y=0
$$

Recipe:

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { Recipe: } \\
\left.\left(\frac{d}{d t}\right)^{2}-\left(\frac{d}{d t}\right)-1\right) y=0 \\
\left(\frac{d}{d t}-\frac{1+\sqrt{5}}{2}\right)\left(\frac{d}{d t}-\frac{1-\sqrt{5}}{2}\right) y=0
\end{array}\right.
\end{aligned}
$$

(we know, e. y.

$$
\begin{aligned}
& \frac{d}{d t} 3 \frac{d}{d t} y=\frac{d}{d t}_{d t}^{2}(3 y) \\
& =3\left(\left(\frac{d}{d t}\right)^{2} y\right) \cdots,
\end{aligned}
$$

We know

$$
\left(\underset{\substack{\text { anything... } \\ \text { taking } \\ c \rightarrow 0}}{\substack{d t}}\left(\frac{d}{2}-\frac{1-\sqrt{5}}{2}\right) y=0\right.
$$

is satisfied by

$$
y(t)=
$$

$$
c_{2} e^{\left(\frac{1-\sqrt{5}}{2}\right) t}
$$

But... same equation $y^{\prime \prime}-y^{\prime}-y=0$ equivelat to

$$
\left(\frac{d}{d t}-\frac{1-\sqrt{5}}{2}\right)\left(\frac{d}{d t}-\frac{1+\sqrt{5}}{2}\right) y=0
$$

$$
y(t)=c_{1} e^{\left(\frac{1+\sqrt{5}}{2}\right) t}+c_{2} e^{\left(\frac{1-\sqrt{5}}{2}\right) t}
$$

Recall: ${ }_{0}^{\left(t_{c, i}, y_{0}\right)}{ }_{\left(t_{1,1}\right)} \quad t_{\text {end }}-t_{L} 3 N h$

appresimebe
Y (tend) via Euler's method for $y^{\prime}=A_{y}$, then

$$
\begin{aligned}
Y_{1} & =y_{0}+h A y_{0} \\
& =(1+h A) y_{0} \ldots \\
Y_{N} & =(1+h A)^{N} Y_{0}, \quad \text { limit h } h \rightarrow 0
\end{aligned}
$$

Solve

$$
y^{\prime \prime}-y^{\prime}-y=e^{\sin (t)}+20 t^{3}
$$

say we find

$$
\begin{array}{r}
z(t) \text { sit. } \\
z^{\prime \prime}, z^{\prime}-z=
\end{array}
$$

then if z is a solution, and w solves the "homogeneous" version $\omega^{\prime \prime}-\omega^{\prime}-\omega=0$ then $y(t)=z(t)+w(t)$ is another saluting

Say $y=y(t)$

$$
\left(\frac{d}{d t}-2\right)^{2} y=0
$$

ther

$$
\begin{aligned}
& y=c_{1} e^{2 t}+c_{2} t e^{2 t} \\
& \left(\frac{d}{d t}-2\right)\left(t e^{2 t}\right) \\
& =\underbrace{\frac{d}{d t}\left(t e^{2 t}\right)-2 t e^{2 t}}_{e^{2 t}+t 2 e^{2 t}-2 t e^{2 t}=e^{2 t}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& \left(\frac{d}{d t}-O\right)^{2} y=0 \\
& y^{\prime \prime}=0 \\
& y(t)=c_{1}+c_{2} t
\end{aligned}
$$

we know $y(t)=c_{1} e^{0 \cdot t}=c_{1}$ is a solviion...

$$
\begin{gathered}
(\sigma-0)^{2} F=0 \\
\sigma^{2} E=0 \\
F_{0} f_{1} F_{2} f_{3}- \\
\left(\sigma^{2} f\right)_{0}\left(\sigma^{2} f\right)_{1}
\end{gathered}
$$

solution $E_{n}=0 \quad n \geq 2$
$F_{0,} F_{1}$ anythry

$$
\begin{aligned}
& (\sigma-1)^{2} F=0 \\
& \sigma^{2} F-2 \sigma f+F=0
\end{aligned}
$$

$$
\begin{aligned}
& F_{n+2}-2 f_{n+1}+F_{n}=0 \\
& \text { If }-F_{n}=c_{1} 1^{n}+n 1^{n} c_{2} \\
& =c_{1}+c_{2} n
\end{aligned}
$$

works...
Also .-
given $F_{0,} F_{1}$

$$
\begin{aligned}
& F_{2}=\text { determined } \\
& F_{3}=\cdots
\end{aligned}
$$

