CPSC 303, Jan 31, 2024 - Recurrences: General algorithm: $F_{n_{\tau}2} - F_{n-1} - F_{n} = 0$ $(\sigma^{2} - \sigma - 1)(F_{n}) = 0$ Solve $r^2 - r - 1 = 0$ $\left(J - \frac{1+\sqrt{5}}{2} \right) \left(J - \frac{1-\sqrt{5}}{2} \right) \left(F_n \right) = 0$ - ODES with constant coefficients? $\begin{pmatrix} y'' - y' - y = 0 \\ (\frac{d}{dt} - \frac{1t\sqrt{5}}{2}) \begin{pmatrix} d - \frac{1-\sqrt{5}}{2} \\ \frac{d}{dt} = \frac{1}{2} \end{pmatrix} = 0$ - Multiple roots

Lost time : $(\texttt{K}) \quad F_{n+2} \quad F_{n+1} \quad -F_n = 0 \quad \forall n$ 91~ F, Fo F2, F3, ---Rlso go beckwords! Fi For y For, For we write (*) as $\left(\left(\sigma^{2}-\sigma-\iota\right)\left(F\right)\right)_{n}=0$ \sim γ J = shift operator : $(\sigma F)_n = F_{n+1}$

think of c , Sequences , Sequences , Sequence , mdxed , mdxed , mdxed , o,1,2,--Sc J' Sequences Sequence O' Moexed Modered over J' arr ... -2, -1, 0, 1, 2, -1, -2, -1, 0, 1, 2, --(J-IF) = Fri if bi-infinite servence sequence

If you accept this definition (or

some other)

 $(J^2 - J - I) F = O$ Sequence

Recipe' I

r²-r-|=0

Solve ____

acts of Einstins $1, 0, 0^{2}, 0^{3}$ 20,1,2,-- ~ IR or e,g, h h fn Il p(x) = p,(x)pz(x) (polynomick) also hure $pl\sigma$) = $p(\sigma)p(\sigma)$ ₹, J. (J-1)(J-Z) $= \sigma^2 - 3\sigma_{\pm} 7 = (\sigma_{-} 2)(\sigma_{-} 1)$

Look by comparison? $\gamma' = A_{\gamma}$ general solution y(t) = Cett i.e. y(t) = Cett, it satisfies $\frac{d}{dt} Y = A Y$ $\left(\frac{d}{dt} - A\right) \chi = 0$ Say yer have $\gamma'' - \gamma' - \gamma = 0$

Recipei $\left(\left(\frac{d}{dt} \right)^{L} - \left(\frac{d}{dt} \right)^{L} \right)$ 1/5 d + 1+5 d + -5

we know, e.g.

ブ

9 3 2 1 = d) 34)

 $3\left(\left(\frac{d}{H}\right)^{2}, \ldots,$

We know $\begin{pmatrix} anything \\ taking \end{pmatrix} \begin{pmatrix} d \\ d \end{pmatrix} \begin{pmatrix} 1-\sqrt{5} \\ d \end{pmatrix} \end{pmatrix} = 0$ is satisfied by $\left(\frac{1-\sqrt{5}}{2}\right)-t$ Y(t) = But--- Same equation y'-y'-y=0 equivalent to $\begin{pmatrix} d & (-\sqrt{5}) \\ \sqrt{5t} & z \end{pmatrix} \begin{pmatrix} d & -\sqrt{5} \\ dt & z \end{pmatrix} = 0$ Lignere we get

 $\frac{\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)} + \frac{\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)} + \frac{\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)} + \frac{\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)} + \frac{\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)} +$ Recall! (toryo) tend-to" Nh to t₁ tend appresimate via Euler's y (tend) methed for Y = Ay, Y,= YothAyo $= (I + hA) \gamma_{0} = -- Y_{N} = (I + hA)^{N} \gamma_{0}, (Imit h \rightarrow 0)$

Solve $e^{\operatorname{Sm}(t)}$ + $70t^3$ $\gamma - \gamma - \gamma =$ \smile Say we find Z(t) s,1, 3'-2-2= then if 7 is a solution, and w solves the homogeneous" $versim \omega'' - \nu' - \omega = 0$ then $y(t) = \overline{z(t)} + w(t)$ is Gnother 50/しイドム、

 $\left(\frac{d}{dt}-C\right)$ $\gamma = 0$ Y' =0 $Y(t) = C_1 + C_2 t$ we know y(4) = c, P = C,a solution -ĩ5 ١

(0-0) F = 0 $\sigma^2 F = 0$ F_c F_1 F_2 F_3 - - $(f^2 f) (f^2 f)$ solution En=0 h=2 $\frac{F_{0},F_{1}}{(T-1)^{2}F=0}$ $C^{2}F - 2CF + F = 0$

Fn+2 - 2 Fn+1 + Fn = 0

 $= (t C_2 h)$

works ____

Also --

F. = determined

