CPSC 303, Jan 22, 2024
We say A and B, two $m \times m$ matrices, are similar if for some invertible $m \times m$ matrix S, we have

$$
A=S B S^{-1}
$$

If so:

$$
\begin{aligned}
A^{2} & =S B S^{-1} \int B S^{-1} \\
& =\int B^{2} S^{-1}
\end{aligned}
$$

simitar

$$
A^{k}=\int B^{k} S^{-1}
$$

smiler

$$
A^{2}+20 A^{30}=S\left(B^{2}+20 B^{30}\right) S^{-1}
$$

So...

$$
e^{A t}=? ?
$$

$e^{A t}, \quad A=$ scalar...

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\ldots
$$

Sc...

$$
e^{A}=I+A+\frac{A^{2}}{2}+\frac{A^{3}}{3!}+\cdots
$$

The point:

$$
\begin{aligned}
& \frac{d}{d t}\left(e^{A t}\right)=\frac{d}{d t}\left(I+A t+\frac{(A t)^{2}}{2}+\frac{(A t)^{3}}{3!}+\cdots\right) \\
& \quad=A+\frac{A^{2} 2 t}{2}+\frac{A^{3} 3 t^{2}}{3!}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =A\left(I+A_{t}+\frac{(A t)^{2}}{2!}+\ldots\right) \\
& =A e^{A t}=e^{A t} A
\end{aligned}
$$

So if you cons) dr, some $m \times m, A$, some $t_{c} \in \mathbb{R}, \vec{y}_{0} \in \mathbb{R}^{m}$

$$
\begin{aligned}
& f(t)=e^{A\left(t-t_{0}\right)} \stackrel{\rightharpoonup}{\varphi_{0}} \\
& f^{\prime}(t)=\left(e^{A\left(t-t_{0}\right)}\right)\left(\vec{\varphi}_{0}\right)+ \\
&=A e^{A\left(t-t_{0}\right)\left({\stackrel{\rightharpoonup}{\varphi_{0}}}^{\prime}\right)} \\
& \stackrel{\mu}{0}^{A}=A f(t)
\end{aligned}
$$

$$
A=S \beta S^{-1}
$$

$\sin y=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$
then

$$
\text { then } \begin{aligned}
B^{2} & =\left[\begin{array}{ll}
\lambda_{1} & 0 \\
c & \lambda_{2}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
\lambda_{1}^{2} & 0 \\
0 & \lambda_{2}^{2}
\end{array}\right] \\
p(A) & =\int p(B) S^{-1} \quad p \text { any } p j^{\prime} y \\
& =\int p\left(\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\right) S^{-1}
\end{aligned}
$$

$$
=S\left[\begin{array}{cc}
p\left(\lambda_{1}\right) & 0 \\
0 & p\left(\lambda_{2}\right)
\end{array}\right] S^{-1}
$$

Smulerly: If

$$
\begin{aligned}
& e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots \\
& \sin (x)+x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots
\end{aligned}
$$

any globally convergent pow or series $f=f(x)$

$$
f(A)=S\left[\begin{array}{cc}
f\left(\lambda_{1}\right) & 0 \\
0 & f\left(\lambda_{2}\right)
\end{array}\right] S^{-1}
$$

So $e^{A t}=S\left[\begin{array}{ll}e^{\lambda_{1} t} & 0 \\ 0 & e^{\lambda_{2} t}\end{array}\right] S^{-1}$

So!

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],
$$

eigenvalues: .-
If

$$
\begin{aligned}
& \text { If } A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] \\
& {\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
a+b \\
a+b
\end{array}\right]=(a+b)\left[\begin{array}{c}
1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
a-b \\
b-c
\end{array}\right]=(a-b)\left[\begin{array}{c}
1 \\
-1
\end{array}\right]}
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
a+b & a-b \\
a+b & b a
\end{array}\right]} \\
& \left\{\begin{array}{cc}
\rho & \left\{\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
a+b & 0 \\
0 & a-b
\end{array}\right] \\
A & B \\
S & B
\end{array}\right.
\end{aligned}
$$

S. :

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] } & =S B S^{-1} \\
& =S\left[\begin{array}{cc}
a+b & 0 \\
0 & c-b
\end{array}\right] S^{-1}
\end{aligned}
$$

So

$$
e^{\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]}=S\left[\begin{array}{ll}
e^{a \cdot b} & c \\
0 & e^{a-b}
\end{array}\right] S^{-1}
$$

Rem! Any matrix of the form:

$$
\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right] \text {, such as }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text {, }
$$

cen be diagonalized in this moray:

$$
A=S\left(\begin{array}{l}
\text { some } \\
\text { diamond } \\
\text { matrix }
\end{array}\right) S^{-1}
$$

Last time .n before .-

$$
\begin{aligned}
& f\left(x_{0}\right)=f\left(x_{0}\right) \\
& f\left(x_{0}^{*} h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\cdots \\
& f\left(x_{0}+2 h\right)=f\left(x_{0}\right)+2 h f^{\prime}\left(x_{0}\right)+\ldots
\end{aligned}
$$

Created derivative schemes In $[A \& G]$, these are stated ir an ad hoe fashion... For us ... Vandermonde matrices

So... interpolation...

3 pouts,
there's a
unique parabola

Theorem: [Lineur Algebra without
Linear Algebra calculations...
Say you have data pants, $n+1$ of them $\quad(x, y)$

$$
\left(x_{n}, y_{n}\right)
$$

-1| 0 |
| :--- |
| $\left(x_{0}, y_{0}\right)$ |

Sc $\quad x_{0}<x_{1}<\ldots<x_{n+1}$.
Then there exist unique reals

$$
C_{0}, C_{1}, \ldots, C_{n}
$$

sit. $p(x)=c_{c}+c_{1} x+\ldots+c_{n} x^{n}$

Satisfies:

$$
p\left(x_{0}\right)=10, p\left(x_{1}\right)=y_{1}, \ldots, p\left(x_{n}\right)=y_{n}
$$

Proof: We are trying to solve

$$
\begin{aligned}
& c_{0}+c_{1} x_{0}+c_{2} x_{0}^{2}+\ldots+c_{n} x_{0}^{n}=Y_{0} \\
& c_{c}+c_{1} x_{1}+c_{2} x_{1}^{2}+\ldots+c_{n} x_{1}^{n}=y_{1}
\end{aligned}
$$

Lie.

$$
A\left[\begin{array}{c}
c_{0} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
\vdots \\
y_{n}
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & & & & \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{n}
\end{array}\right]
$$

Does this have a unique solution?
The fullary are equiv
(1) $A\left[\begin{array}{c}c_{c} \\ j_{n} \\ c_{n}\end{array}\right]=\left[\begin{array}{c}y_{0} \\ \vdots \\ y_{n}\end{array}\right]$ hus a unique solution for all $Y 0,-, Y_{n}$
(2) A is invertible
(3) $\operatorname{det}(A) \neq 0$
(4) A is of rank $n+1$
(36) The systen (homegerecus verstion)

$$
A\left[\begin{array}{c}
c_{0} \tag{*}\\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\vdots \\
0
\end{array}\right]
$$

has $\left[\begin{array}{c}c_{0} \\ \vdots \\ c_{n}\end{array}\right]=\left[\begin{array}{c}c \\ \vdots \\ 0\end{array}\right]$ as its unieque solutim.

Examine the last condition! if

$$
p(x)=c_{0}+c_{1} x+\ldots+c_{n} x^{n}
$$

then (k) holds iff

$$
\begin{aligned}
& p\left(x_{0}\right)=0, p\left(x_{1}\right)=0, \ldots, p\left(x_{n}\right)=0 \\
& C \text { colm: If so } p(x)=\text { zere poly }
\end{aligned}
$$

Next time:
Prove clam who linear alg,

