CPSC 303, Jan 22, 2024 We say A and B, two men metrices, are similar if for some invertible men metrix S, we have A=SBS, $f_{f = 50} : A^2 = SBS^{-1}SBS^{-1}$ $= SB^2S^{-1}$ Similary Ak = SBK 5-1

50 --e At = ?? PAt A= sachar -- $e^{x} = [+ x + \frac{x^{2}}{2} + \frac{x^{3}}{31} + \dots]$ Sc $e^{A} = \overline{1} + A + \frac{A^{2}}{2} + \frac{A^{3}}{3!} + \cdots + \frac{A^{2}}{3!} + \frac{A^{2}}{3!} + \frac{A^{3}}{3!} + \cdots + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \cdots + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \frac{A^{3}}{3!} + \cdots + \frac{A^{3}}{3!} + \frac{A^{3}}{$ the point ? $\frac{d}{dt}\left(e^{At}\right) = \frac{d}{Jt}\left(I + At + \frac{(At)^{2}}{2} + \frac{(At)^{3}}{31} + \frac{(At)^{3}}{2}\right)$ $= A + \frac{A^2 2t}{7} + \frac{A^3 3t^2}{7}$

 $= A\left(I + A + \frac{A +}{z} + \cdots \right)$

 $f(y) = e^{A(t-t_a)} \frac{1}{\gamma_a}$

 $f'(t) = \left(e^{A(t-t_0)} \right) \left(\frac{J}{10} \right) t$

 $= 5 \left[\rho(\lambda_1) \circ \\ \circ \rho(\lambda_2) \right] 5^{-1}$

Similarly: If

 $Siv(x) = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} + - -$

any globelly convergent power revies

f = f(x)

 $f(A) = S \begin{pmatrix} f(\lambda_1) \circ \\ \circ f(\lambda_2) \end{bmatrix} S^{-1}$ So $e^{At} = S \begin{bmatrix} e^{\lambda_1 t} & 0 \end{bmatrix} = 1$

So!

$$A = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$$

eigenvolves; --
If $A = \begin{pmatrix} a \\ b \\ a \end{pmatrix}$

So $\left(\begin{array}{c}ab\\b\\a\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\b\\a\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\e^{ab}\\c\\e^{ab}\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\e^{ab}\\c\\e^{ab}\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\e^{ab}\\c\\e^{ab}\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\e^{ab}\\c\\e^{ab}\\c\\e^{ab}\end{array}\right) = \left(\begin{array}{c}e^{ab}\\c\\e\\e^{ab}\\c\\e^{ab}\\c\\e^{ab}\\c\\e^{ab}\\c\\e^{ab}\\c\\e\\$ Rem! Any matrix of the form? $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$, such as $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, car be diagonalized in this Mary ; A= 5 (Some diagonal matrix) 5

Last time -- before - $f(x_0) = f(x_0)$ f(x, wh) = f(x,) + h f'(x,) + -f(x,+2h) = f(x,)+2h f'(x,)+---Created derivative schemes In [A&G], these are stated in an ad had fashion .---For us --- Vandermande matrices

So -- interpolation (ઝ. (20,70) 3 ponts, Ø a there's a LNGLe ۲z χ° X, parabola

Theorem ! [Linew Algebra without Lineor Algebra calculations.] Say you have data points, N+1 of them (x_1, y_1) (x_n, y_n) (x_0, y_0) Sc XoZX, C - CXn+1. Then there exist unique reals $C_{\sigma}, C_{i}, \ldots, C_{n}$ s,t, $p(x) = C_{t} + C_{t} \times + - - + C_{n} \times n$

Schistics ? p(x,)=1/0 , p(x,)=),,-~, p(x,)=Yn. Proof: We are trying to solve $C_{o} + C_{1} \times_{o} + C_{2} \times_{o}^{2} + \ldots + C_{n} \times_{o}^{n} = 1 / 0$ $C_{o} + C_{1} \times_{i} + C_{2} \times_{i}^{2} + \ldots + C_{n} \times_{i}^{n} = 1 / 0$ ĺ.e. $\left(\begin{array}{c}
C_{0} \\
\vdots \\
C_{n}
\end{array}\right) = \left(\begin{array}{c}
Y_{0} \\
\vdots \\
Y_{n}
\end{array}\right)$ where

 $A = \begin{bmatrix} I & X_0 & X_0^2 & \dots & Y_n^n \\ I & X_1 & X_1^2 & \dots & X_n^n \end{bmatrix}$ Does this have a unique solution? The followy are equiv () A [;] = [} hus a unique solution for all your you 2 A is invertible (3) det $(A) \neq O$ (4) A is of vent N+1

36) The system (homogeneous vertice) $A\begin{pmatrix} c_{0}\\ \vdots\\ c_{n} \end{pmatrix} = \begin{pmatrix} c_{0}\\ \vdots\\ c_{n} \end{pmatrix} \qquad (1)$ has $\begin{pmatrix} c_{e} \\ i \\ c_{n} \end{pmatrix} = \begin{pmatrix} c \\ i \\ c_{n} \end{pmatrix} \begin{pmatrix} c_{e} \\ c_{e} \end{pmatrix} \begin{pmatrix} c_{e} \\ c_{e} \\ c_{e} \end{pmatrix}$ cnique solution. Examine the last condition! if

 $p(x) = c_0 + c_1 X + \ldots + c_n X^h$

then (K) holds iff

p(x_)=c, p(x_)=0, ..., p(x_)=0

Claim: If so p(x) = zero poly

Next time: Prove claim w/o lines alg,