CPSC $303 \operatorname{Jan} 15,2024$

Note:
(1) Tennis' office hours today:

$$
2: 30-4 \text { pm, ICCS } \times 341
$$

(2) Preliminary version of notes on ODE's has been posted.
(3) LateX snippets (warring...)

Today! - Q2, Homework 1

$$
\begin{aligned}
& -\vec{y}^{\prime}=A \vec{y} \quad \vec{y}\left(t_{0}\right)=\vec{y}_{0} \\
& \text { applied to } y^{\prime \prime}=C_{y}\binom{\text { harmonic }}{\text { oscillator }}
\end{aligned}
$$

- Euler's method

Say we have $(h>0)$

$$
\begin{array}{r}
f\left(x_{0}\right), \quad f\left(x_{0} \pm h\right)= \\
f\left(x_{c}+h\right), \\
\\
f\left(x_{c}-h\right)
\end{array}
$$

Use 3 values to approximate

$$
f^{\prime}\left(x_{0}\right) \ldots
$$

Simplest: $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=f^{\prime}(x)$
So probably

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \\
& f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}\right)-f\left(x_{0}-h\right)}{h}
\end{aligned}
$$

Systemeticall, : $\quad C_{-1}, C_{0}, C_{1} \in \mathbb{R}$

$$
\begin{aligned}
& \frac{c_{-1} f\left(x_{0}-h\right)+c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{0}+h\right)}{h} \\
& \approx f^{\prime}\left(x_{0}\right) \\
& = \\
& \frac{c . g . c_{-1}=0, c_{1}=1, c_{0}=-1 \vdots}{h\left(x_{0}-h\right)+(-1) f\left(x_{0}\right)+1 f\left(x_{0}+h\right)} \\
& \sim \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
\end{aligned}
$$

(AlG)!

$$
\begin{aligned}
f^{\prime}\left(x_{2}\right) & =\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+O(h) \\
& \frac{1}{h}\left(\frac{h^{2}}{2} f^{\prime \prime}(\xi)\right) \\
& =\frac{h}{2} f^{\prime \prime}(\xi) \\
& =O(h) \\
& \text { ar } O(h) m_{2}
\end{aligned}
$$

where $m_{2} \geq\left|f^{\prime \prime}(\xi)\right|$ over all ξ relevant

Linear algebra: Taylor exp.

$$
\begin{aligned}
c_{1} f\left(x_{0}+h\right)= & c_{1}\left(f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)\right. \\
& +\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\left\{\begin{array}{l}
0\left(h^{3}\right) \\
c\left(h^{3}\right) m_{3} \\
\left|c_{1}\right| \underbrace{0\left(h^{3}\right) m_{3}}_{\text {positive }}
\end{array}\right\} \\
c_{0} f\left(x_{0}\right)= & c_{c} f\left(x_{0}\right) \\
c_{-1} f\left(x_{0}-h\right)= & c_{-1}\left(f\left(x_{0}\right)+(-h) f^{\prime}\left(x_{0}\right)\right. \\
& \left.+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+O\left(h^{3}\right) m_{3}\left(c_{-1}\right)\right)
\end{aligned}
$$

sum!

$$
\begin{aligned}
& \quad f\left(x_{2}\right)\left(c_{1}+c_{0}+c_{-1}\right)+ \\
& h f^{\prime}\left(x_{0}\right)\left(c_{1}-c_{-1}\right)+ \\
& \frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)\left(c_{1}+c_{-1}\right)+O\left(h^{3}\right)
\end{aligned}
$$

to hare equal $h f^{\prime}\left(x_{0}\right)$

$$
+0 f\left(x_{0}\right)+0 f^{\prime \prime}\left(x_{0}\right)
$$

we want

$$
\begin{aligned}
& c_{7}+c_{0}+c_{-1}=0 \quad f \quad f \\
& c_{1}-c_{-1}=1 \leftarrow f^{\prime} \\
& c_{1}+c_{-1}=0 \quad f^{\prime \prime} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 0 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{0} \\
c_{-1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]}
\end{aligned}
$$

We solve (you solve)

$$
\begin{aligned}
& c_{1}=1 / 2 \\
& c_{c}=0 \\
& c_{-1}=-1 / 2
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2} \\
\vdots & & & \\
x_{1}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right],
$$

"Vandermonde" matrix
interpolation, derivatives

$$
\begin{aligned}
& \Rightarrow \\
& \frac{\left(\frac{1}{2}\right) f\left(x_{0}-h\right)+\left(\frac{1}{2}\right) f\left(x_{0}-h\right)}{h} \\
& =\frac{h f^{\prime}\left(x_{0}\right)+O\left(h^{3}\right) m_{3}\left(\left|c_{1}\right| t\left|c_{0}\right|+\mid c_{1}, 1\right)}{h} \\
& =f^{\prime}\left(x_{0}\right)+O\left(h^{2}\right)\left\{\begin{array}{l}
\text { leave it } \\
m_{3} \\
m_{3}\left(\left|c_{0}\right| t\right. \\
\left|c_{0}\right|+ \\
\mid c_{1}
\end{array}\right)
\end{aligned}
$$

Solve: $\quad \vec{y}^{\prime}=A \vec{y}, \vec{y}\left(t_{0}\right)=\vec{y}_{0}$
Solution

$$
\stackrel{\rightharpoonup}{y}(t)=e^{A\left(t-t_{0}\right)} \stackrel{\rightharpoonup}{y}_{0}
$$

as an

- system of m ODE
- an ODE m-dimensianal
- $A=m \times m$ matrix of constants

$$
-\vec{y}(t): \mathbb{R} \rightarrow \mathbb{R}^{m}
$$

time variables

Harmonic Oscillator:

$$
\begin{aligned}
& \text { mass-accelatiction: Farce } \\
& \text { acc. }=\text { Force } / m \\
& \left.\begin{array}{r}
\frac{d^{2}}{d t^{2}}(x)= \\
X^{\prime \prime} \\
\dot{X}=
\end{array}\right\}-C\left(x-x_{\text {rest }}\right)
\end{aligned}
$$

Simplify:

$$
\begin{aligned}
& x^{\prime \prime}=-C x \\
& x^{\prime \prime}=-x \\
& x^{\prime \prime}(t)=-x(t)
\end{aligned}
$$

egg.

$$
\begin{aligned}
& (\sin (t))^{\prime \prime}=-\sin (t) \\
& (\cos (t))^{\prime \prime}=-\cos (t)
\end{aligned}
$$

guess: maybe geneal solution is

$$
k_{1} \sin (t)+k_{2} \cos (t) \ldots ?
$$

Idea: $v=x^{\prime}$

$$
\begin{aligned}
& v^{\prime}=-x \\
& x^{\prime}=v \\
& {\left[\begin{array}{c}
v \\
x
\end{array}\right]^{\prime}=\left[\begin{array}{c}
-x \\
v
\end{array}\right]} \\
& \vec{y}=\left(y_{1}(t), y_{2}(t)\right): \mathbb{R} \rightarrow \mathbb{R}^{2} \\
& y_{1}(t)=x(t) \quad \text { time } \\
& y_{2}(t)=v(t)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
v \\
x
\end{array}\right]^{\prime}=\left[\begin{array}{c}
-x \\
v
\end{array}\right]} \\
& y^{\prime}=
\end{aligned}=\underbrace{\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]}_{A}\left[\begin{array}{l}
v \\
x
\end{array}\right]
$$

Solvtien:

$$
\rightharpoonup_{y}(t)=\underbrace{e^{A\left(t-t_{0}\right)}} \underbrace{}_{y_{0}}
$$

what is

$$
e^{\text {matrix }}
$$

to be cortinved.

