CPSC 303, Jan. 12,2024
Today!

- ODE: $y^{\prime}=y$, "isoclines"
- ODE's of the form

$$
y^{\prime}=f(y) \quad y=y(t)
$$

later $\vec{y}^{\prime}=\vec{f}(t, \vec{y})$, system of $m$ ODE: $\quad \vec{y}=\vec{y}(t): \mathbb{R} \rightarrow \mathbb{R}^{m}$

$$
\left.\stackrel{\rightharpoonup}{f}(t, y): \mathbb{R}^{\prime} \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}\right)
$$

- Exconples: $y^{\prime}=y^{2}, \quad y^{\prime}=|y|^{1 / 2}$

Question: What could possibly go wrung?

Executive summary:
Solve $y^{\prime}=f(y) \quad y\left(t_{0}\right)=y_{0}$
(1) If $f$ continuous near $y=y o$, then a solution exists locally
(2) Moreover, if $f$ is Lipschitz
(or differentiable) near $y=y_{0}$, the local solution is unique
(3) If $f$ is anal, tic near $y=y 0$, the unique local solution is anally, tic
(4) If $|f(y)| \leqslant K y$ for some $K$ constant,
then there is a global solution.

Last time:

$$
y^{\prime}=A y_{1}, \quad y\left(t_{0}\right)=y_{0}
$$

$$
y: \mathbb{R} \rightarrow \mathbb{R}
$$



Want $y^{\prime}=y, \quad y(1)=1$

$$
\begin{aligned}
& y^{\prime}=y \quad y=y(t), \quad y^{\prime}(t)=\frac{d y}{d t}(y) \\
& =y(t) \\
& \begin{array}{l|l}
\hline y(t)=1 & y^{\prime}(t)=1
\end{array} \\
& y(t)=\frac{3}{2} \quad y^{\prime}(t)=3 / 2 \\
& y^{\prime}=y: y(t)=e^{t+c} \\
& y\left(t_{0}\right)=y_{0} \quad y(t)=e^{A\left(t-t_{0}\right)} y_{0}
\end{aligned}
$$



$$
\begin{aligned}
& y(2)=-1 \quad t_{0}=2, y_{0}=-1 \\
& e^{t-t_{c}} y_{0}=(-1) e^{t-2}=-e^{t-2}
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}=y: \quad \frac{d y}{d t}=y \\
& \frac{d y}{y}=d t \\
& \int \frac{d y}{y}= \int d t \\
& y>0 \vdots \quad \int \frac{d y}{y}=\ln (y)+C_{1} \\
& \quad \int d t=t+C_{2} \\
& \ln (y)+C_{1}=t+C_{2}
\end{aligned}
$$

$$
\begin{aligned}
\ln (y) & =t+C \\
e^{\ln (y)} & =e^{t+C} \\
y(t)=y & =e^{t+C} \\
y\left(t_{0}\right)=y_{0} & \Rightarrow \text { determines } C \\
& \Rightarrow y(t)=e^{t-t_{0}} y
\end{aligned}
$$

Censider

$$
\begin{aligned}
& y^{\prime}=y^{2}, \quad y(1)=1 \\
& \frac{d y}{d t}=y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d y}{y^{2}}=\partial t \\
& \int \frac{d y}{y^{2}}=\int d t \\
& \frac{-1}{y}=t+C \\
& y=\frac{-1}{t+c} \quad\left(\begin{array}{c}
\text { Exangle } 2.4 .2 \\
C a l c \\
y
\end{array}\right) \\
& \left.y(1)=1 \quad t_{0}=1, y\right)_{c}=1 \\
& 1=\frac{-1}{1+c} \quad 1+c=-1 \\
& \quad c=-2
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{-1}{t-2}=\frac{1}{2-t} \\
& \begin{array}{l}
y(t) \quad y=3 t \quad|1| 1 \mid 11 \\
y^{\prime}=y^{2}=4, \quad y=2 t i l \\
1 \\
1
\end{array} \\
& y^{\prime}=y^{2}=1 \\
& y=1- \\
& 1,111 \\
& \sum_{t=1}^{1} \sum_{t=2}^{1} \\
& y(t)=\frac{1}{2-t}, \quad \begin{array}{l}
y(t) \rightarrow \infty \\
\text { as } t \rightarrow 2
\end{array} \\
& y^{\prime}=y^{2}
\end{aligned}
$$

What

$$
y^{\prime}=|y|^{1 / 2} ?
$$

What cold possibly go wrong?


$$
\begin{gathered}
\frac{d y}{d t}=|y|^{1 / 2} \\
y>0: \quad \frac{d y}{d t}=y^{1 / 2}
\end{gathered}
$$

$$
\begin{aligned}
& \int \frac{d y}{y^{1 / 2}}=\int d t \quad \frac{1}{y^{1 / 2}}=y^{-1 / 2} \\
& \frac{y^{1 / 2}}{1 / 2}=t+C \\
& y^{1 / 2}=\frac{1}{2}(t+C) \\
& y^{\prime}=\frac{1}{4}(t+c)^{2} \\
& y^{\prime}=\frac{1}{4}(2(t+c))=\frac{1}{2}(t+c) \\
& =0=\sqrt{\frac{1}{4}(t+c)^{2}}=\sqrt{y} \\
& =0
\end{aligned}
$$

$$
y(t)=\frac{1}{4}(t+C)^{2}
$$



$$
\begin{aligned}
& y^{\prime}=|y|^{1 / 2} \geq 0 \\
& \frac{d y}{(-y)^{1 / 2}}=d t
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{d y}{(-y)^{1 / 2}}=\int d t \\
& \int(-y)^{-1 / 2} d y \\
& =\frac{(-y)^{1 / 2}}{1 / 2}(-1)=t+C \\
& (-y)^{1 / 2}(-1)=\frac{1}{2}(t+C) \\
& -y=\frac{1}{4}(t+c)^{2} \\
& y=-\frac{1}{4}(t+C)^{2}
\end{aligned}
$$

Or sulutians:

$$
y>0: \quad y(t)=\frac{1}{4}(t+C)^{2}
$$

$$
y<0: \quad y(t)=-\frac{1}{4}(t+c)^{2}
$$



$$
y=\frac{1}{4}(t+c)^{2} \quad y^{\prime}=\frac{1}{4} 2(t+c)=\frac{1}{2}(t+c)
$$

Clam: let $a<b$


Then:

$$
y(t)=\left\{\begin{array}{cc}
\frac{1}{4}(t-b)^{2} & b \leq t \\
0 & a \leq t \leq b \\
-\frac{1}{4}(t-a)^{2} & t \leq a
\end{array}\right.
$$

This is a solution of $y^{\prime}=|y|^{1 / 2}$

Problem: $y^{\prime}=f(y)$

$$
f(y)=|y|^{1 / 2}
$$



