CPSC $303 \quad J_{\text {an }} 10,2024$

- HW I will be assigned on Jan II, due on gradescope on Jan 18
- Access gradescope via Canvas
- Today!
(1) Separable ODE's
(see, e.g., UBC Math Textbook
Lips: // personal.math.ubc.ca

$$
/ \sim C L P / C L P Z
$$

$\oint 2,4$ Separable Diff. Eq.

Ch 1! "Reviewing" terminology
Ch 4! $\|\vec{u}\|_{2}=\sqrt{u_{1}^{2}+\ldots+u_{n}^{2}}$
for $\vec{u} \in \mathbb{R}^{n}$

- Classes of functions
- Taylar Series
- ODE's:

PDF $\quad h=h\left(t, x_{1}, \ldots, x_{n}\right)$
heat eq $\quad \frac{\partial h}{\partial t}=-\Delta_{x_{1},-x_{2}} h$

PDE's foundotion of elliptic PDEs
" "parabole"

-     - 

=
Taylar's Thm: $|h|$ small intuitivel

$$
\begin{aligned}
& f\left(x_{0}+h\right) \\
& \equiv f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}(\xi) \\
& \approx \begin{array}{c}
\left.1, x_{0}\right)+h f^{\prime}(\text { somewhere in betuoon } \\
1
\end{array} \\
& x_{0}^{x_{0}} \hat{\}}_{0}^{x_{0}+h} m \\
& \text { Mam Value Thm }
\end{aligned}
$$

$$
\begin{aligned}
& f\left(x_{0}+h\right)= \\
& f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right) \\
& \quad+\frac{h^{3}}{3!} f^{(3)}\left(x_{0}\right)+\cdots \\
& \quad+\frac{h^{k}}{k!} f^{(k)}\left(x_{0}\right)+\frac{h^{k+1}}{(k+1)!} f^{(k+1)}(\xi)
\end{aligned}
$$



$$
\begin{aligned}
f\left(x_{0}+h\right)= & f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \\
& +\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\frac{h^{3}}{6} f^{\prime \prime \prime}\left(\xi_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
h f^{\prime}\left(x_{0}\right)= & f\left(x_{0}+h\right)-f\left(x_{0}\right) \\
& -\frac{h^{2}}{2} f^{\prime \prime}\left(\xi_{2}\right) \\
f^{\prime}\left(x_{0}\right)= & \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-\frac{h}{2} f^{\prime \prime}\left(\xi_{2}\right) \\
= & \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}+\operatorname{Order}(h)
\end{aligned}
$$

where
$O(h)$ is some function (depends $f, x_{0}$ )

$$
|\operatorname{Order}(h)| \leqslant \frac{h}{2} m_{2}
$$

where $M_{2}$ bound on $f^{\prime \prime}$ in the interval $\left[x_{0}, x_{0}+h\right]$

By def:

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow c} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

Really taken from
$[A \& G], \operatorname{Ch} 14$, Sediow 1,2
$=$
Useful notation:
If $a<b \in \mathbb{R}$


$$
c[a, b] \stackrel{\operatorname{def}}{\sim}\{f:[a, b] \rightarrow \mathbb{R}
$$

sit. $f$ is continuous $\}$

$$
k=\mathbb{N}=\{1,2,3, \ldots\}
$$

$$
C^{k}(a, b)=\left\{\begin{array}{l}
f!(a, b) \rightarrow \mathbb{R}
\end{array}\right.
$$

sit. $f$ has $k$ continuous derivatives for all $x \in(a, b)\}$

$$
C^{k}[a, b]=\{f:[a, b]+\mathbb{R} \text { sit. }
$$

sit. $f$ has $k$ continuous derivatives for all $x \in[a, b]\}$

$$
\begin{aligned}
& (a, b)=\{x \in \mathbb{R} \mid a<x<b\} \\
& {[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}}
\end{aligned}
$$

E such that

$$
C^{\infty}(a, b)=\{f:(a, b) \rightarrow \mathbb{R} \text { rit. }
$$

$f$ has all dernatives of all order \}

$$
C^{w}(a, b)=\{f:(a, b) \rightarrow \mathbb{R} \text { sit. }
$$

for all $x_{0} \in(a, b)$,

$$
\begin{aligned}
& f\left(x_{0}+h\right) \\
& \quad=f\left(x_{0}\right)+\frac{h}{1} f^{\prime}\left(x_{0}\right)+\frac{h^{2}}{2!} f^{\prime \prime}\left(x_{0}\right) \\
& \quad+\frac{h^{3}}{3!} f^{\prime \prime \prime}\left(x_{0}\right)+\ldots
\end{aligned}
$$

Fer example

$$
\begin{aligned}
e^{x}= & 1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \\
& \cdots+\frac{x^{n}}{n!}+\ldots
\end{aligned}
$$

"Taylor series"

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

[This is the case $\left.x_{0}=0, h m x\right]$
Based on $\left(e^{x}\right)^{\prime}=e^{x},(\sin x)^{\prime}=\cos x$,

$$
\left.\begin{array}{l}
C^{0}(a, b) \\
C^{\prime}(a, b) \subset C^{0}(a, b) \\
C^{2}(a, b) \subset C^{\prime}(c, b)
\end{array}\right) C^{0}(a, b) .
$$

$C^{\omega}$ (real analy,tic)

$$
\begin{array}{r}
c c^{\infty} c \ldots c c^{4} \subset c^{3}<c^{2} c c^{1} \\
c c^{0}
\end{array}
$$

Start $O D E$ !
Simple $O D E[A \& G]$ :

$$
\begin{gathered}
y^{\prime}=f(t, y) \\
y^{\prime}=\frac{d y}{d t}=\dot{y}
\end{gathered}
$$

Caution! Math textbook?

$$
\left.y^{\prime}=\frac{d y}{d x}=f(x, y)\right]
$$

$$
y=y(t)
$$



$$
\begin{aligned}
\frac{d y}{d t}(t) & =y^{\prime}(t) \\
& =\underset{\text { function }}{\text { given }}(t, y(t))
\end{aligned}
$$

Given" initial condition" $t_{0, y_{0}} \in \mathbb{R}$ impose

$$
y\left(t_{0}\right)=y / 0
$$

we expect a unique solution.

$$
y^{\prime}(t)=A y(t)
$$

$A \in \mathbb{R}, A$ given
Claim:

$$
y(t)=e^{A t} C
$$

verify:

$$
\begin{aligned}
y^{\prime}(t) & =\left(e^{A t} C\right) \\
& =\left(A e^{A t}\right) C \\
& =A y(t)
\end{aligned}
$$

$y\left(t_{0}\right)=y_{0} \quad$ given $y_{0}, t_{0} \in \mathbb{R}$


$$
\begin{aligned}
& y\left(t_{0}\right)=e^{A t_{0}} C \\
& y_{0} \quad C=y_{0} e^{-A t_{0}}
\end{aligned}
$$

$$
\begin{aligned}
y(t) & =e^{A t} C \\
& =e^{A t} y_{0} e^{-A t_{0}} \\
& =y_{0} e^{A\left(t-t_{0}\right)}
\end{aligned}
$$



A big enough, $>0$

Is the solution origue 777
Con we simply guess???

Class Ended:

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right)+\ldots \\
& x_{0}=0 \\
& f(h)=f(0)+h f^{\prime}(0)+\frac{h^{2}}{2} f^{\prime}(0)+\ldots \\
& e^{h}=1+h-1+\frac{h^{2}}{2}-1+\ldots \\
& e^{x}=1+x+\frac{x^{2}}{2}+\ldots\binom{\text { exchange }}{\text { x for } h}
\end{aligned}
$$

