CPSC 303 Jan 8, 2024

"In mathematics you don't understand things. You just get used to them."

- John von Heumann

My afternate form!

"In mathematics it takes time for ideas and examples to sink in."

Course website:
https://www.cs.ubc.ca/~jf
/courses/303.52024/index.html

CPSC 303: Parts of Ch 10-12, 14-16 of textbook by Ascher & Greif (available online for free). Topics: CL10-17 Interpolation, Appreximation Ch 14-16 Differentiation, Integration, ODE's [PDE's]

Discussion! please post to piazza page. If this fails, please email

Ta: jf@cs.ubc.ca Subject: CPSC 303

Grading: (10%) max(h,m,f) + (35%) max(m,f) + (55%) f, h=homework, m=midterm, f=final Dse: canvas. ubc.ca for piazza and gradescope

Homework! Set Th 11:59 pm, due Th 11:59 pm.

Individual Homework: You must write up your own solution

Group Homework: You can make a group submission, groups & 4 people

Start: Intro to ODE's

§ 1.2, § 4.2 (norms)

§ 14.2 differtiation

\$16.1,2 ODE'S

Heading towards Ordinary Differential Equations (Ch 16 [A&G]) Absolute us. Relative Error! if VER is an approx to u + 12, then absolute error (in v) (as an approximation to u) is

relative error | W | The same works in 1?? $||U||_{2} = ||(u_{1,-},u_{n})||_{2}$ $= \sqrt{\sqrt{2} + \sqrt{2} + \cdots + \sqrt{n}}$ Also use | | ~ | mex = | ~ | ~ | ~ | w; | | (\land i \land n \) abs error in V as an approx

to u is || \(\vec{u} - \vec{v} \) \(\p \)

rel error || \(\vec{u} - \vec{v} \) \(\p \)

|| \(\vec{u} - \vec{v} \) \(\p \)

where p=1,2,00.

Taylor's Theorem;
$$(p.5)$$
 $f:(a,b) \rightarrow IR$, $(a < b, a, b \in IR)$
 $(a,b) \stackrel{\text{def}}{=} \{x \in IR \mid a < x < b\}$
 $f = f(x)$, for $a < x < b$
 $f(x) \in IR = \{ rec \mid number \}$

Assume f has $k+1$ derivatives

in (a,b) :

 $f(x)$ is f
 $f'(x)$ is f
 $f'(x)$ is f

f'''(x) = f(3)(x)

;

$$f^{(k)}(x) = k^{+} der \text{ of } f \text{ cd } x$$

So $f^{(k+1)}(x) = xirts \text{ in } (a,b)$

We have $x_{e,h} \in \mathbb{R}$ s.t. [such that]

 x_{o} , x_{o} + [ie in (a,b)

(remark h can be negative)

 $\frac{1}{x_{o}}$ + $\frac{1}{x_{o}}$ +

$$f(x_{0}+h) = f(x_{0}) + h f'(x_{0})$$

$$+ \frac{h^{2}}{2} f''(x_{0}) + ... + \frac{h^{k}}{k!} f^{(k)}(x_{0})$$

$$+ error$$