$$
\text { CPSC } 303 \quad \operatorname{Jan} 8,2024
$$

"In mathematics you don't understand things. You just get used to them."

- John var Heumann

My alternate form:
"In mathematics it takes time for ideas and examples to sink in."

Course website:

$$
\begin{aligned}
& \text { https://www.cs,ubc.ca/~jf } \\
& \text { / courses/303.52024/index. html }
\end{aligned}
$$

CSC 303 :
Parts of Ch $10-12,14-16$ of textbook by Asches \& Greif, (available online for free).

Topics:
Ch 10-12 Interpolation,
Approximation
Ch 14-16 Differentiation,
Integration, ODE's [PDE's]

Discussion! please post to piazza page.
If this fails, please email
To: jf@cs.ubc.ca
Subject: CPSC 303

Grading:

$$
\begin{gathered}
(10 \%) \max (h, m, f)+ \\
(35 \%) \max (m, f)+(55 \%) f
\end{gathered}
$$

$h=$ homework, $m=$ midterm, $f=$ final

Use: canvas.ubcica for piazza and gradescope

Homeverk! Set Th 11:59 pm, due Th 11:59 pm.
Individual Homework: You must write up your own solution

Group Homework: You can make a group submission, groups ≤ 4 people

Start: Intro to ODE's

$$
\begin{aligned}
& \oint 1.2, \quad \$ 4.2 \text { (norms) } \\
& \$ 14.2 \text { differtiation } \\
& \$ 16.1,2 \text { ODE's }
\end{aligned}
$$

Heading towards
Ordinary Differential Equations

$$
(C h 16[A \& G])
$$

Absolute vs. Relative Error: if $V \in \mathbb{R}$ is in approx to $u \in \mathbb{R}$, then absolute error (in v) (as an approximation to u) is

$$
|u-v|
$$

relative error $\frac{|u-v|}{|u|}$

The same works in \mathbb{R}^{n} :

$$
\begin{aligned}
\|\vec{u}\|_{2} & =\left\|\left(u_{1}, \ldots, u_{n}\right)\right\|_{2} \\
& =\sqrt{u_{1}^{2}+u_{2}^{2}+\ldots+u_{n}^{2}}
\end{aligned}
$$

Also use

$$
\begin{aligned}
& \|\vec{u}\|_{1}=\left|u_{1}\right|+\ldots+\left|u_{n}\right| \\
& \|\vec{u}\|_{\max }=\|\vec{u}\|_{\infty}=\max _{1 \leq i \leq n}\left|u_{i}\right|
\end{aligned}
$$

abos errar in \vec{V} as co approx te \vec{u} is $\|\vec{u}-\vec{v}\|_{p}$
rel errar $\quad \frac{\|\stackrel{\rightharpoonup}{u}-\stackrel{\rightharpoonup}{N}\|_{p}}{\|\vec{u}\|_{p}}$
where $p=1,2, \infty$.

Taylor's Theorem: (p.5)

$$
\begin{aligned}
& f:(a, b) \rightarrow \mathbb{R}, \quad(a<b, a, b \in \mathbb{R}) \\
& (a, b) \stackrel{\text { def }}{=}\{x \in \mathbb{R} \mid a<x<b\} \\
& f=f(x), \quad \text { for } a<x<b \\
& \\
& f(x) \in \mathbb{R}=\{\text { real number }\}
\end{aligned}
$$

Assume f has $k+1$ derivatures in (a, b) :
$f(x)$ is f
$f^{\prime}(x)$ is $\frac{d f}{d x}$ or $f^{\prime}(x)$
$f^{\prime \prime}(x)$ is $\left(f^{\prime}(x)\right)^{\prime}=f^{\prime \prime}$

$$
f^{\prime \prime \prime}(x)=f^{(3)}(x)
$$

$$
f^{(k)}(x)=k \stackrel{t L}{ } \text { der of } f \text { at } x
$$

So $f^{(k+1)}(x)$ exists in (a, b)
We have $x_{0}, h \in \mathbb{R}$ sot. [such that $]$
$x_{0}, x_{0} t h$ lie in (a, b)
(remark h can be negative)

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f\left(x_{0}\right)+h f^{\prime}\left(x_{0}\right) \\
& +\frac{h^{2}}{2} f^{\prime \prime}\left(x_{0}\right)+\ldots+\frac{h^{k}}{k!} f^{(k)}\left(x_{0}\right)
\end{aligned}
$$

+ error

$$
\text { error }=\frac{h^{k+1}}{(k+1)!} f^{(k+1)}(\xi)
$$

where \mathcal{E} is between X_{0} and X_{0} th

