Homework 6 Solutions, CPSC 303,2024
(2) (a) Subtract Row 1 from Rows 2 and 3 gives:

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & \varepsilon & 4 \varepsilon+\varepsilon^{2} \\
0 & -\varepsilon & -4 \varepsilon+\varepsilon^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1}-y_{0} \\
y_{2}-y_{0}
\end{array}\right]
$$

adding row 2 to row 3 gives

$$
\left[\begin{array}{ccc}
1 & 2 & 4 \\
0 & \varepsilon & 4 \varepsilon+\varepsilon^{2} \\
0 & 0 & 2 \varepsilon^{2}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1}-y_{0} \\
y_{2}-y_{0}+\left(y_{1}-y_{0}\right)
\end{array}\right]
$$

So

$$
2 \varepsilon^{2} c_{2}=1 / 2+y_{1}-2 y
$$

So

$$
c_{2}=\frac{y_{2}+y_{1}-2 y_{0}}{2 \varepsilon^{2}}
$$

(b) So

$$
c_{2}(\varepsilon)=\frac{f(2-\varepsilon)+f(2+\varepsilon)-2 f(2)}{2 \varepsilon^{2}}
$$

taking $\varepsilon \rightarrow 0$, using L'Hâpital's Rule
we differentiate the numerator and denominator separately and find:

$$
\lim _{\varepsilon \rightarrow 0} c_{2}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} \frac{-f^{\prime}(2-\varepsilon)+f^{\prime}(2+\varepsilon)-0}{4 \varepsilon}
$$

and other application of $L^{\prime} H \hat{o} p i t a l ' s ~ r u l e ~$ gives that this limit

$$
=\lim _{\varepsilon \rightarrow 0} \frac{f^{\prime \prime}(2-\varepsilon)+f^{\prime \prime}(2+\varepsilon)}{4}=\frac{2 f^{\prime \prime}(2)}{4}=\frac{f^{\prime \prime}(2)}{2}
$$

Alternative: By Talyor's theorem we have

$$
\begin{aligned}
& f(2+\varepsilon)=f(2)+\varepsilon f^{\prime}(2)+\frac{\varepsilon^{2}}{2} f^{\prime \prime}(2)+O\left(\varepsilon^{3}\right) \\
& f(2-\varepsilon)=f(2)-\varepsilon f^{\prime}(2)+\frac{\varepsilon^{2}}{2} f^{\prime \prime}(2)+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

So

$$
f(2+\varepsilon)+f(2-\varepsilon)=2 f(2)+\varepsilon^{2} f^{\prime \prime}(z)+0\left(\varepsilon^{3}\right)
$$

So

$$
f(2+\varepsilon)+f(2-\varepsilon)-2 f(2)=\varepsilon^{2} f^{\prime \prime}(2)+O\left(\varepsilon^{3}\right)
$$

Hence

$$
\frac{f(2+\varepsilon)+f(2-\varepsilon)-2 f(2)}{2 \varepsilon^{2}}=\frac{f^{\prime \prime}(2)}{2}+O(\varepsilon)
$$

so

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} C_{2}(\varepsilon) & =\lim _{\varepsilon \rightarrow 0} \frac{f(2+\varepsilon)+f(2-\varepsilon)-2 f(2)}{2 \varepsilon^{2}} \\
& =\frac{f^{\prime \prime}(2)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3(a)\left|a x_{1}+b x_{2}\right| \leqslant\left|a x_{1}\right|+\left|b x_{2}\right| \leqslant|a m|+|b m| \\
& \leqslant m(|a|+|b|)
\end{aligned}
$$

3(b) Similarly $\left|c x_{1}+d x_{2}\right| \leqslant m(|c|+|d|)$,
So

$$
\begin{aligned}
& \| A x| |_{\infty}=\max \left(\left|a x_{1}+b x_{2}\right|,\left|c x_{1}+d x_{2}\right|\right) \\
& \leqslant m \max (|a|+|b|,|c|+|d|) \\
& =\|\vec{x}\|_{\infty} \max (|a|+|b|,|c|+|d|)
\end{aligned}
$$

$3(c) \quad A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}a+b \\ c+d\end{array}\right]$, sc if a, b are both positive or zero or negative we have $|a+b|=|a|+|b|$, so

$$
\left\|A\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|_{\infty} \geqslant|a+b|=|a|+|b|
$$

If a, b have opposite signs, then

$$
\begin{aligned}
& |a-b|=|a|+|b| \text {, and } \\
& \left\|A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\|_{\infty}=\left\|\left[\begin{array}{l}
a-b \\
c-d
\end{array}\right]\right\|_{\infty} \geq|a|+|b|
\end{aligned}
$$

(d) Similarly we have

$$
\left\|A\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\|_{\infty} \text { or }\left\|A\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\|_{\infty} \geq|c|+|d|
$$

Since $\left.\left\|\left[\begin{array}{c}1 \\ 1\end{array}\right]\right\|_{\infty}=\| \begin{array}{c}1 \\ -1 \\ -1\end{array}\right] \|_{\infty}=1$, it follows that for $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ or $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ we have

$$
\|A \vec{x}\|_{\infty} \geqslant \max (|a|+|b|,|c|+|d|)\|\vec{x}\|_{\infty} .
$$

So this and 3(b) implies

$$
\begin{aligned}
\|A\|_{\infty} & \stackrel{\text { def }}{=} \max _{\vec{x} \neq 0} \frac{\|A \vec{x}\|_{\infty}}{\|\vec{x}\|_{\infty}} \\
& =\max (|a|+|b|,|c|+|d|)
\end{aligned}
$$

4. We have

$$
\begin{aligned}
\left\|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right\|_{1} & =\left\|\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{\top}\right\|_{\infty} \\
& =\left\|\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\right\|_{\infty} \\
& =\max (|a|+|c|,|b|+|d|)
\end{aligned}
$$

(Which agrees with the formula in Section 6 of the handout).

5 (a) Since $x_{0}=2, x_{1}=2+\varepsilon, x_{2}=2-\varepsilon$, the bottom right entry of A^{-1} is

$$
\frac{1}{\left(x_{2}-x_{0}\right)\left(x_{1}-x_{0}\right)}=\frac{1}{(-\varepsilon)(-2 \varepsilon)} \frac{1}{2 \varepsilon^{2}}
$$

Hence

$$
\left\|A^{-1}\right\|_{\infty} \geq \frac{1}{2 \varepsilon^{2}}
$$

(b) We have for $A=A(\varepsilon)$,

$$
A\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
c_{c} \\
c_{1} \\
c_{2}
\end{array}\right]=A^{-1}\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]
$$

(by multiplying both sides by A^{-1} on the left) hence

$$
\left.c_{2}=\text { (bottom row of } A^{-1}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]
$$

Since

$$
C_{2}=\frac{y_{1}+y_{2}-2 y_{0}}{2 \varepsilon^{2}}=\frac{1}{2 \varepsilon^{2}}\left[\begin{array}{lll}
-2 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{0} \\
y_{1} \\
y_{2}
\end{array}\right]
$$

we have
[bottom row of $\left.A^{-1}\right]=\frac{1}{2 \varepsilon^{2}}\left[\begin{array}{lll}-2 & 1 & 1\end{array}\right]$
So, indeed, the bottom right entry of A^{-1} is $\frac{1}{2 \varepsilon^{2}} \cdot 1=\frac{1}{2 \varepsilon^{2}}$.
(c) Since A has an entry equal to 4 , we have $\|A\|_{\infty} \geq 4$, and hence

$$
\|A(\varepsilon)\|_{\infty}\left\|A^{-1}(\varepsilon)\right\|_{\infty} \geq 4 \cdot \frac{1}{2 \varepsilon^{2}} \geq 2 \varepsilon^{2} .
$$

Note! we can get a better estimate using the fact that

$$
A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
\ddots & \ddots
\end{array}\right] \text {, so }\|A\|_{\infty} \geq 1+2+4=7
$$

and that

$$
A^{-1}(\varepsilon)=\left[\begin{array}{ccc}
i & i & \vdots \\
-1 / \varepsilon^{2} & 1 / 2 \varepsilon^{2} & 1 / 2 \varepsilon^{2}
\end{array}\right]
$$

to see that

$$
\left|\left|A^{-1}(\varepsilon) \|_{\infty} \geqslant\left|\frac{-1}{\varepsilon^{2}}\right|+\left|\frac{1}{2 \varepsilon^{2}}\right|+\left|\frac{1}{2 \varepsilon^{2}}\right|=\frac{2}{\varepsilon^{2}}\right.\right.
$$

Hence

$$
\|A(\varepsilon)\|_{\infty}\left\|A^{-1}(\varepsilon)\right\|_{\infty} \geq 7 \cdot \frac{2}{\varepsilon^{2}}=\frac{14}{\varepsilon^{2}}
$$

In any event

$$
K_{\infty}(A)=\|A(\varepsilon)\|_{\infty}\left\|A^{-1}(\varepsilon)\right\|_{\infty}
$$

tends to ∞ as $\varepsilon \rightarrow 0$, at least as fast as $14 / \varepsilon^{2}$ tends to ∞.

