CPSC 303, Homewort Solvtions 5, 2024
(1) Joel Friedman
$(2)(a)$

$$
\begin{aligned}
& \frac{d}{d t}(\vec{x} \cdot \vec{z})=\frac{d}{d t}\left(x_{1} z_{1}+x_{2} z_{2}\right) \\
= & \frac{d}{d t}\left(x_{1} z_{1}\right)+\frac{d}{d t}\left(x_{2} z_{2}\right)
\end{aligned}
$$

(productrule)

$$
\begin{aligned}
& =\left(x_{1} \dot{z}_{1}+\dot{x}_{1} z_{1}\right)+\left(\dot{x}_{2} \dot{z}_{2}+\dot{x}_{2} z_{2}\right) \\
& =\vec{x} \cdot \dot{\vec{z}}+\dot{\vec{x}} \cdot \overrightarrow{\vec{z}}
\end{aligned}
$$

(b) $\frac{d}{d t}\left(\|\stackrel{\rightharpoonup}{x}\|^{2}\right)=\frac{d}{d t}(\vec{x} \cdot \stackrel{\rightharpoonup}{x})$,
using part (a) wish $\vec{z}=x$,

$$
=\vec{x} \cdot \stackrel{\rightharpoonup}{x}+\stackrel{2}{x} \cdot \vec{x}=2 \vec{x} \cdot \vec{x}
$$

(c) Since m is constant, using part (b) with $\dot{\vec{x}}$ replacing \vec{x} :

$$
\begin{aligned}
& \frac{d}{d t}\left(m\|\dot{\vec{x}}\|^{2}\right)=m \frac{d}{d t}\left(\|\dot{\vec{x}}\|^{2}\right) \\
& \quad=m 2 \dot{\vec{x}} \cdot \stackrel{\rightharpoonup}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \frac{d}{d t}\|x\|=\frac{d}{d t} \sqrt{\vec{x} \cdot \vec{x}} \stackrel{\text { chainvule }}{=} \\
& \frac{1}{2} \frac{1}{\sqrt{\vec{x} \cdot \stackrel{\rightharpoonup}{x}}} \frac{d}{d t}(\vec{x} \cdot \vec{x})=\frac{1}{2} \frac{1}{\|\vec{x}\|^{2}} 2 \vec{x} \cdot \dot{\vec{x}} \\
& =\frac{1}{\|\vec{x}\|^{2}} \vec{x} \cdot \stackrel{\rightharpoonup}{x}
\end{aligned}
$$

(e) $\frac{d}{d t} U(\|\vec{z}\|) \stackrel{\text { chcin rule }}{=} U^{\prime}(\|\vec{z}\|) \frac{d}{d t}\|\vec{z}\|$
part(d)

$$
u(\|\stackrel{\rightharpoonup}{z}\|) \frac{1}{\|\stackrel{\rightharpoonup}{z}\|^{2}} \overrightarrow{\vec{z}} \cdot \dot{\vec{z}}
$$

(f) $\frac{d}{d t} \frac{1}{2} m\|\dot{x}\|^{2} \stackrel{\text { part }(c)}{=} m \dot{\vec{x}} \cdot \ddot{\ddot{x}}$

$$
\begin{aligned}
& \stackrel{\text { central force }}{=} m \overrightarrow{\vec{x}} \cdot\left(-u(\|\vec{x}\|) \frac{\vec{x}}{\|\vec{x}\|}\right) \\
& =-m u(\|\vec{x}\|) \frac{\vec{x} \cdot \dot{\vec{x}}}{\|\vec{x}\|} \\
& \frac{d}{d t}(m U(\|\vec{x}\|)) \xrightarrow{\text { part (e) with } \vec{z} \rightarrow \vec{x}} \\
& =m u(\|\vec{x}\|) \frac{\vec{x} \cdot \dot{\vec{x}}}{\|\vec{x}\|}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{d}{d t} E_{\text {energy }}(t)=\frac{d}{d t}\left(\frac{1}{2} m\|\dot{\vec{x}}\|^{2}\right)+\frac{d}{d t}(m U(\|\vec{x}\|)) \\
& \quad=0
\end{aligned}
$$

2. (a) (i)

$$
E\left(y_{0}\right)=-0.68, E\left(y_{w}\right)=-0.0175
$$

$E\left(y_{i}\right)$ appears to strictly increase
(i.e. decrease in absolute value), especially when the planet is near $(0,0)$, for $t \leq$ roughly 50. If you examine the energy differences closely, the first decrease (morease in absolute value) occurs from y_{469} to y_{470}.]

From then on, there is a slight decrease in energy.
The ellipse-like orbits (which are ellipses in exact computation) seem to get larges as time increases [which is consistent with a negative but
increasing energy].
(ii) $E\left(y_{0}\right)=-0.68, E\left(y_{N}\right)=-0.2137$, and the same happens as in (i), except the enery always increases
(like (i), the increase is faster the closer the planet gets to $\vec{C}=(0,0))$.
(iii) $E\left(y_{0}\right)=-0.68, \quad E\left(y_{i v}\right)=-0.4980$, and similar to (ii).
(b) $E(y 0)=-0.68, E(y / v)=-0.4071$.

Here the energy decreases (increases in absolute value) when the planet moves toward the Sun, and the reverse as it moves away,
with an overall increase in energy at each revolution. (Hence) the elliptic shape of the orbit slightly increases.

This wasn't assigned, but if you
toke $h=0.01, N=6000$ in the explicit trapezoidal method, $E\left[y_{i}\right]$
remains close to $E\left[y_{0}\right]=-0.68$
for all i (between $-0.68036 \ldots$
and $-0.67935 \ldots)$.
(4) (a) This is $\left(\sigma^{2}-1\right)\left(x_{n}\right)=0$, solving $r^{2}-1=0$ we get $r= \pm 1$.
Hence $x_{n}=c_{1}(1)^{n}+c_{2}(-1)^{n}=c_{1}+c_{2}(-1)^{n}$.
(b) $\quad x_{0}=c_{1}+c_{2}(-1)^{0}=c_{1}+c_{2}=5$

$$
x_{1}=c_{1}-c_{2}=7
$$

adding these two equation gives $2 c_{1}=12$
so $c_{1}=6$, and then $c_{2}=5-c_{1}=5-6=-1$.
Hence $x_{n}=6-(-1)^{n}$.
(c) We get $x_{a}=6-(-1)^{9}=7$,
$x_{10}=6-(-1)^{10}=5$, and similarly $x_{11}=7, x_{12}=5$.
This is not the fastest way, since

$$
x_{n+2}-x_{n}=0 \quad \Rightarrow \quad x_{n}=x_{n+2}
$$

and hence

$$
x_{0}=x_{2}=x_{4}=\cdots \quad \text { and } \quad x_{1}=x_{3}=x_{5}=\ldots
$$

and hence, for $x_{0}=5, x_{1}=7$ we have

$$
S=x_{0}=x_{2}=x_{4}=\ldots \text { and } 7=x_{1}=x_{3}=x_{5}=\ldots
$$

(d)

$$
\begin{aligned}
y_{n+1} & =\left[\begin{array}{l}
x_{n+2} \\
x_{n+1}
\end{array}\right]=\left[\begin{array}{l}
x_{n} \\
x_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n+1} \\
x_{n}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] y / n
\end{aligned}
$$

Hence $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Hence $A^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$,

So

$$
I=A^{0}=A^{2}=A^{4}=\ldots
$$

and

$$
A=A^{3}=A^{5}=\ldots=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

So

$$
A^{9}=A^{11}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad A^{10}=A^{12}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { or } I
$$

$$
\begin{aligned}
\text { (5) (a) } x_{0} & =c_{1} 2^{0}+c_{2} \cdot 0 \cdot 2^{0}=c_{1} \\
x_{1} & =c_{1} 2^{1}+c_{2} \cdot 1 \cdot 2^{1}=2\left(c_{1}+c_{2}\right)
\end{aligned}
$$

So

$$
c_{1}=x_{0}, \quad c_{2}=\frac{x_{1}}{2}-c_{1}=\frac{x_{1}-2 x_{0}}{2} \text { or } \frac{x_{1}}{2}-x_{0}
$$

Hence

$$
x_{n}=x_{0} 2^{n}+\left(\frac{x_{1}}{2}-x_{0}\right) n 2^{n}
$$

OR, OPTIONALLY,

$$
=x_{0}\left(2^{n}\right)(1-n)+x_{1} \frac{n 2^{n}}{2}
$$

OR

$$
x_{0}(1-n) 2^{n}+x_{1} n 2^{n-1}
$$

(b)

$$
\begin{aligned}
\vec{y}_{n+1}=\left[\begin{array}{c}
x_{n+2} \\
x_{n+1}
\end{array}\right] & =\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n+1} \\
x_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right] \vec{y}_{n} .
\end{aligned}
$$

Hence

$$
\vec{y}_{n}=\left[\begin{array}{l}
x_{n+1} \\
x_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right] \text {, where } A=\left[\begin{array}{cc}
4 & -4 \\
1 & 0
\end{array}\right]
$$

Since $\quad 2 I-\left[\begin{array}{cc}4 & -4 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}-2 & 4 \\ -1 & 2\end{array}\right]=N$
and we've seen in class the $N^{2}=0$, we have $2 I-A=N$ so $A=2 I-N$,
so

$$
\begin{aligned}
& A^{n}=(2 I)^{n}+\binom{n}{1}(2 J)^{n-1}(-N)+\text { terms with } \\
& N^{2} \text { or } N^{3} \text { or } \ldots \\
&=2^{n} I+n 2^{n-1}(-N) \\
&=\left[\begin{array}{ll}
2^{n} & 0 \\
0 & 2^{n}
\end{array}\right]+n 2^{n-1}\left[\begin{array}{cc}
2 & -4 \\
1 & -2
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{cc}
2^{n}+n 2^{n} & -n 2^{n+1} \\
n 2^{n-1} & 2^{n}-n 2^{n}
\end{array}\right]
$$

So

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{n+1} \\
x_{n}
\end{array}\right]=\left[\begin{array}{ll}
\text { wheleser } & \text { whetever } \\
n 2^{n-1} & 2^{n}(1-n)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right]} \\
& \Rightarrow \\
& x_{n}=n 2^{n-1} x_{1}+2^{n}(1-n) x_{0}
\end{aligned}
$$

(which argees with (a)).

$$
(A(\varepsilon))^{n}=S(\varepsilon)\left[\begin{array}{cc}
2^{n} & 0 \\
0 & (2+\varepsilon)^{n}
\end{array}\right)(S(\varepsilon))^{-1}
$$

where

$$
\begin{aligned}
& S(\varepsilon)=\underbrace{\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right]}_{m_{1}}+\varepsilon \underbrace{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]}_{m_{2}} \\
& {\left[\begin{array}{ll}
2^{n} & 0 \\
0 & (2+\varepsilon)^{n}
\end{array}\right]=\left[\begin{array}{ll}
2^{n} & 0 \\
0 & 2^{n}+n 2^{n-1} \varepsilon+O\left(\varepsilon^{2}\right)
\end{array}\right]} \\
& =\underbrace{2^{n} I}_{m_{3}}+\varepsilon \underbrace{n 2^{n-1}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]}_{m_{4}} \\
& (S(\varepsilon))^{-1}=\frac{-1}{\varepsilon}\left[\begin{array}{cc}
1 & -2-\varepsilon \\
-1 & 2
\end{array}\right] \\
& =\frac{-1}{\varepsilon}(\underbrace{\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]}_{M_{5}}+\underbrace{\left.\varepsilon\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\right), ~(\underbrace{2})}_{M_{6}}
\end{aligned}
$$

Since

$$
\left(m_{1}+\varepsilon m_{2}\right)\left(m_{3}+\varepsilon m_{4}\right)\left(m_{5}+\varepsilon m_{6}\right)
$$

$$
\begin{aligned}
& =m_{1} m_{3} m_{5}+ \\
& =\left[m_{2} m_{3} m_{5}+m_{1} m_{4} m_{5}+m_{1} m_{3} m_{6}\right]
\end{aligned}
$$

We calculate

$$
\begin{aligned}
m_{1} m_{3} m_{5} & =\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right] 2^{n} I\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right] 2^{n}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
\end{aligned}
$$

(which has to be the case if

$$
\lim _{\varepsilon \rightarrow 0}(A(\varepsilon))^{n} \text { has a finite limit). }
$$

(1) $m_{2} m_{3} m_{5}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] 2^{n}\left[\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right]=2^{n}\left[\begin{array}{cc}-1 & 2 \\ 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \text { (2) } m_{1} m_{4} m_{5}=\left[\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right] n 2^{n-1}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right] \\
& =n 2^{n-1}\left[\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]=n 2^{n-1}\left[\begin{array}{cc}
-2 & 4 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

(3) $m_{1} m_{3} m_{6}=\left[\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right] 2^{n}\left[\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right]$

$$
=2^{n}\left[\begin{array}{ll}
0 & -2 \\
0 & -1
\end{array}\right]
$$

And the sum of (1), (2),(3) is

$$
\begin{aligned}
& 2^{n}\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]+n 2^{n-1}\left[\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right]+2^{n}\left[\begin{array}{cc}
0 & -2 \\
0 & -1
\end{array}\right] \\
& =2^{n}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{cc}
-2 & 4 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
(A(\varepsilon))^{n} & =\frac{-1}{\varepsilon}\left(\varepsilon\left(2^{n}\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{cc}
-2 & 4 \\
-1 & 2
\end{array}\right]\right)+O\left(\varepsilon^{2}\right)\right) \\
& =2^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{cc}
2 & -4 \\
1 & -2
\end{array}\right]+\theta(\varepsilon)
\end{aligned}
$$

So

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0}(A(\varepsilon))^{n}=2^{n}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+n 2^{n-1}\left[\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{n}+n 2^{n} & -n 2^{n+1} \\
n 2^{n-1} & 2^{n}-n 2^{n}
\end{array}\right]
\end{aligned}
$$

(which does agree with our answer in part (b)).

