CPSC 303, Homework Solutions
(1) Joel Friedman
(2a) $n=13$: largest entry of $s-e_{-}$to_the_ A (in absolute value)
in homework 2 sol.txt is roughly $10^{-13} \cdot(-0.477)$
(2b) $n=13$, mysteriously, the analogue for
$A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ has seemingly almost the same
largest entry in absolute value
(3a) Typing "chactic-sqrt $(-2,2,1000,-1) ;$
(assuming you have saved chaotic sqrt.m
into the current working directory),
you get $1.00355 \ldots$
And "chactic_sqrt $(-2,2,100000,-1)$;
gives 1.00021...
[Note that this agrgees with the solution:

$$
y(t)=\left[\begin{array}{rl}
-1 / 4 t^{2} & \text { for } t \leq 0 \\
1 / 4 t^{2} & \text { for } t \geq 0
\end{array}\right]
$$

3(b) chaotic-sqrt $(0,2, N, 0)$.
for any, N returns O
$3(c)$ chaotic_sqrt $(0,2,10000,(e-20)$;
gives $0.99844 \ldots$, and
$3(d)$ chaotic_sqrt $(0,2,10000,(e-40)$; gives $0.99817 \ldots$

Cote: if you keep at it, you might notice that chaotic_sqr+ $(0,2,10000,1 e-200)$; returns $0.99765 \ldots$ and chaotic-sqr+ $(0,2,10000,(e-400)$, returns 0

This may seem strange...
(Be) Here there is no precise right or wrong answer...

The fact that

$$
y^{\prime}=|y|^{1 / 2} \quad y(0)=0
$$

and

$$
y^{\prime}=|y|^{1 / 2} \quad y(0)=10^{-40}
$$

have such different values at $t=2$ (i.e., the computed value of $y(2)$) hints that $y^{\prime}=|y|^{1 / 2}$ is very badly behaved near $y=0$.
We have said (in class) that this is because $f(y)=|y|^{1 / 2}$ is not differentiable at $y=0$.
[Also, you may have noticed that when you solve

$$
y^{\prime}=f(y), \quad y\left(t_{0}\right)=y_{0}
$$

then for any fixed t_{1}, the value of
$y\left(t_{1}\right)$ which depends on f, t_{0}, t_{1}, y_{0}
Depends continuously on y_{0} - it certainly does if $f(y)$ is differentiable.
For example, the solution to

$$
\begin{aligned}
& y^{\prime}=A y \quad y\left(t_{0}\right)=y_{0} \\
& \text { is } y(t)=e^{A\left(t-t_{0}\right)} y_{0}
\end{aligned}
$$

sc

$$
y\left(t_{1}\right)=e^{A\left(t_{1}-t_{0}\right)} y_{0}
$$

which is continuous in y_{0} for
fixed A, t_{1}, t_{0}
(Ha) If $z(t)=\left(\operatorname{Trans}_{T_{2}} y\right)(t)$ then $z\left(t+T_{1}\right)=y(t) \quad(\forall t)(*)$
If $u(t)=\left(\operatorname{Trans}_{T}, z\right)(t)$
(hence $\left.u=\operatorname{Trans}_{T_{1}}\left(\operatorname{Trans}_{T_{2}}(y)\right)\right)$

$$
u\left(s+T_{2}\right)=Z(s) \quad(\forall s)
$$

Setting $S=t+T_{1}$, then (*) and (**) imply

$$
u\left(t+T_{1}+T_{2}\right)=z\left(t+T_{1}\right)=y(t)
$$

(for all t). Hence

$$
u=\operatorname{Trans}_{T_{1}+T_{2}}(y) .
$$

(Lb) Let $z=\operatorname{Reverse}_{T}(y)$ and
$u=$ Reverse $_{T}(z)$. Then

$$
u=\operatorname{Reverse}_{T}(z)=\operatorname{Reverse}_{T}\left(\operatorname{Reverse}_{T}(y)\right) .
$$

On the other hand

$$
\begin{array}{ll}
z(t)=y(2 T-t) & \forall t \\
u(s)=z(2 T-s) & \forall s
\end{array}
$$

Setting $t=2 T-S$, we get

$$
\begin{aligned}
u(s)=z(2 T-s) & =y(2 T-(2 T-s)) \\
& =y(5)
\end{aligned}
$$

Hence $u=y$ (as functions), so

$$
\text { Reverse }_{+}\left(\text {Reverse }_{+}(y)\right)=y
$$

(4c) Similarly to (Hb)
Let $z=\operatorname{Reverse}_{T_{2}}(y)$ and
$u=$ Reverse $_{T_{1}}(z)$. Then

$$
u=\operatorname{Reverse}_{\tau_{1}}(z)=\operatorname{Reverse}_{T_{1}}\left(\operatorname{Reverse}_{\Phi_{2}}(y)\right) .
$$

On the other hand

$$
\begin{array}{ll}
z(t)=y\left(2 T_{2}-t\right) & \forall t \\
u(s)=z\left(2 T_{1}-s\right) & \forall s
\end{array}
$$

Setting $t=2 T-5$, we get

$$
\begin{aligned}
u(s)=z\left(2 T_{1}-s\right) & =y\left(2 T_{2}-\left(2 T_{1}-s\right)\right) \\
& =y\left(s+2 T_{2}-2 T_{1}\right)
\end{aligned}
$$

so

$$
u\left(t-2 T_{2}+2 T_{1}\right)=y(t)
$$

So

$$
u=\operatorname{Trans}_{\left(2 T_{1}-2 T_{2}\right)}(Y)
$$

(4d) Since $z(t)=y(t-T)$, by the chain rule

$$
\begin{aligned}
(z(t))^{\prime} & =\left(y^{\prime}(t-T)\right)\left((t-T)^{\prime}\right) \\
& =y^{\prime}(t-T) \cdot 1 \\
& =y^{\prime}(t-T) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
z^{\prime}(t)=y^{\prime}(t-T) & =f(y(t-T)) \\
& =f(z(t))
\end{aligned}
$$

(4e) If $z^{\prime}=A z$, then

$$
z(t)=e^{A\left(t-t_{0}\right)} z_{0}
$$

Hence if $z=z(t)$ is positive any where, then $z_{0}>0$, and

$$
\begin{aligned}
z(t) & =e^{A\left(t-t_{0}\right)} e^{\ln \left(z_{0}\right)} \\
& =e^{A\left(t-t_{0}-\frac{\ln \left(z_{0}\right)}{A}\right)}
\end{aligned}
$$

provided that $A=O$, Hence

$$
z(t)=y\left(t-t_{0}-\frac{\ln \left(z_{0}\right)}{A}\right)
$$

So

$$
z=\operatorname{Trans}\left(t_{0}+\frac{\ln \left(z_{0}\right)}{A}\right)(y)
$$

(Hf) Similarly, if $z(t)=y(2 T-t)$, then, by the chain rule,

$$
\begin{aligned}
z^{\prime}(t)=(y(2 T-t))^{\prime} & =y^{\prime}(2 T-t)(2 T-t)^{\prime} \\
& =-y^{\prime}(2 T-t)
\end{aligned}
$$

Hence

$$
\begin{aligned}
z^{\prime}(t)=-y^{\prime}(2 T-t) & =-f(y(2 T-t)) \\
= & -f(z(t))
\end{aligned}
$$

so z satisfies $z^{\prime}=-f(z)$.
(Hg) Continuing from ($4 f$), since
$Z^{\prime}(t)=-y^{\prime}(2 T-t)$, the chain rule implies

$$
\begin{aligned}
z^{\prime \prime}(t) & =\left(z^{\prime}(t)\right)^{\prime}=-\left(y^{\prime}(2 T-t)\right)^{\prime} \\
& =-y^{\prime \prime}(2 T-t)(2 T-t)^{\prime} \\
& =-y^{\prime \prime}(2 T-t)(-1)=y^{\prime \prime}(2 T-t)
\end{aligned}
$$

Hence, if $y^{\prime \prime}=f(y)$, then

$$
\begin{aligned}
z^{\prime \prime}(t)=y^{\prime \prime}(2 T-t) & =f(y(2 T-t)) \\
& =f(z(t))
\end{aligned}
$$

So z satisfies $z^{\prime \prime}=f(z)$.

