CPSC 303, Homework 10 Solutions
$2(a)$ We have $c_{0}=c_{n}=0$ and

$$
\begin{aligned}
2 c_{1}+\frac{h_{1}}{h_{0}+h_{1}} c_{2} & =3 \Phi_{1} \\
\frac{h_{1}}{h_{1}+h_{2}} c_{1}+2 c_{2}+\frac{h_{2}}{h_{1}+h_{2}} c_{3} & =3 \Phi_{2} \\
\frac{h_{2}}{h_{2}+h_{3}} c_{2}+2 c_{3}+\frac{h_{3}}{h_{2}+h_{3}} c_{4} & =3 \Phi_{3}
\end{aligned}
$$

So that

$$
(2 I+m) \vec{c}=3 \Phi
$$

where

$$
M=\left[\begin{array}{cccc}
0 & \frac{h_{1}}{h_{0}+h_{1}} & & \\
\frac{h_{1}}{h_{1}+h_{2}} & 0 & \frac{h_{2}}{h_{1}+h_{2}} & \\
& \frac{h_{2}}{h_{2}+h_{3}} & 0 & \frac{h_{3}}{h_{2}-h_{3}} \\
& & & \ddots
\end{array}\right]
$$

$2(b)$ So the i^{+t} row of M contains $\frac{h_{i-1}}{h_{i-1}+h_{i}}$, $\frac{h_{i}}{h_{i-1}+h_{i}}$ and the rest O 's
(unless $i=1$ where $\frac{h_{0}}{h_{0}{ }^{t} h_{1}}$ is not there, ar $i=n-1$, where $\frac{h_{n-1}}{h_{n-2}+h_{n-1}}$ is not there).

Hence the $i^{\text {th }}$ row has sum of absolute values at most $\frac{h_{i-1}}{h_{i-1}+h_{i}}+\frac{h_{i}}{h_{i-1}+h_{i}}=1$.
Hence $\|m\|_{\infty} \leqslant 1 \quad$ (really $=1$ unless $\left.n-1=1,2\right)$
So

$$
(2 I+m) \stackrel{\rightharpoonup}{e}=3 \Phi
$$

and $\|m\|_{\infty} \leq 1 \Rightarrow$

$$
\begin{aligned}
(2 I+m)^{-1} & =\frac{1}{2}(I+m / 2)^{-1} \\
& =\frac{1}{2}\left(I-m / 2+(m / 2)^{2}-(m / 2)^{3}+\cdots\right)
\end{aligned}
$$

Since $(I+A)^{-1}=I-A+A^{2}-A^{3} T \ldots$ whenever $\|A\|_{\infty}<l$, and $\|m / 2\|_{\infty} \leqslant 1 / 2$.
Hence

$$
\vec{c}=\frac{3}{2}\left(\Psi-m / 2+(m / 2)^{2}-(m / 2)^{3}+\ldots\right) \Phi
$$

(3) $\mid(b, c)$ of Adjacency Matrices,...
(lb)
The idea is to run the software sine-iriticlly (m, ρ, T)
in the appendix for $m=10, \rho=2 / 3$, and T where the software is likely to be unstable.

$$
\text { Since }||-2 \rho|+2 \rho=1 / 3+4 / 3=5 / 3 \text {, }
$$

we hove $(|1-2 \rho|+2 \rho)^{k}=2^{53}$ for

$$
k=53(\log 2 / \log (5 / 3))=71,916 \ldots \approx 72
$$

Since $h=\frac{1}{m}=\frac{1}{10}$, we have $\rho=H / h^{2}$,
So $H=\rho h^{2}=(2 / 3)(1 / 10)^{2}=1 / 300=1 / 150$
So to get 72 iterations we have

$$
T \approx 72 / 150=12 / 25=0.48
$$

So we plot for $T=0.44,0.46,0.48,0.50$ the numerical solution up to these times, and we have:

(Ic) Running the software where
$m=10$, ρ various, and $T=1$ we See that the numerical solution is less than the actual if $\rho=1 / 3,1 / 4$, and larger if $\rho=1 / 8,1 / 10$, and very close to the actual if $\rho=1 / 6$.

$$
\rho=1 / 6
$$

$$
\mathbf{m}=\mathbf{1 0}, \text { rho }=\mathbf{0 . 2 5}, \mathbf{T}(\text { actual })=\mathbf{1}
$$

2(a) We have

$$
\begin{aligned}
& U(i, 1)= \\
& (1-2 \rho) U(i, 0)+\rho(U(i+1,0)+U(i-1,0)) \\
& =\sin (i h)[(1-2 \rho)+\rho(2 \cos (\pi h))] \\
& =U(i, 0)\left(1+2_{\rho}(\cos (\pi h)-1)\right)
\end{aligned}
$$

Similarly, whenever $U(i, j)=c_{j} \sin (i h)$
we have $U(i, j+1)=$
$c_{j} \sin (i h)(1+2 \rho(\cos (\pi h)-1))$ 。
Hence, by induction on j :

$$
\mathcal{L}(i, j)=U(i, 0)(1+2 \rho(\cos (\pi h)-1))^{j}
$$

$$
\begin{aligned}
& (b, c) \text { since } \cos \alpha=1-\frac{\alpha^{2}}{2}+\frac{\alpha^{4}}{4!}+O\left(\alpha^{6}\right) \text {, } \\
& 1+2 \rho(\cos (\pi h)-1) \\
& =1+2 \rho\left(-\frac{(\pi h)^{2}}{2}+\frac{(\pi h)^{4}}{4!}+O\left(h^{6}\right)\right) \\
& \text { Since } \log (1+\varepsilon)=\varepsilon-\frac{\varepsilon^{2}}{2}+O\left(\varepsilon^{3}\right) \text { for } \varepsilon \text { small, } \\
& \log \left((1+2 \rho(\cos (\pi h)-1))^{1 / \rho h^{2}}\right) \\
& =\frac{1}{\rho h^{2}}(\underbrace{2 \rho\left(-\frac{\pi^{2} h^{2}}{2}+\frac{\pi^{4} h^{4}}{24}+O\left(h^{6}\right)\right)} \\
& \left.-\frac{1}{2}()^{2}+O\left(h^{6}\right)\right) \\
& =\frac{1}{\rho h^{2}}\binom{-\rho \pi^{2} h^{2}+\rho \frac{\pi^{4} h^{4}}{12}+O\left(h^{6}\right)}{-\frac{1}{2} \rho^{2} \pi^{4} h^{4}+O\left(h^{6}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =-\pi^{2}+h^{2} \frac{\pi^{4}}{12}-\frac{1}{2} \rho \pi^{4} h^{2}+O\left(h^{4}\right) \\
& =-\pi^{2}+h^{2} \pi^{4}\left(\frac{1}{12}-\frac{1}{2} \rho\right)+O\left(h^{4}\right)
\end{aligned}
$$

Hence

$$
(1+2 \rho(\cos (\pi h)-1))^{\frac{1}{\rho h^{2}}}=e^{\left.-\pi^{2}+h^{2} g(\rho)+d h^{4}\right)}
$$

where $g(\rho)=\pi^{4}\left(\frac{1}{12}-\frac{1}{2} \rho\right)$

$$
\begin{array}{rlll}
\text { So } \quad g(\rho)<0 & \text { for } & \rho>1 / 6 \\
g(\rho)=0 & \cdots & \cdots=1 / 6 \\
\quad \cdots>0 & \cdots & \cdots<1 / 6
\end{array}
$$

Hence the numerical mathed agrees with $e^{-\pi^{2}}+C\left(h^{4}\right)$ iff $\rho=1 / 6$.
This also agrees with the numerical
experiments in the previous question.]
(d) This is exactly the value of ρ making the method a higher order method. in Section 4.6.

