CSC 303 Homework Solutions 1, 2024
(1) Joel Friedman
$(2 a)$

$$
\begin{align*}
c_{0}+c_{1}+c_{2} & =0 \tag{A}\\
c_{1}+2 c_{2} & =1 \tag{B}\\
c_{1}+4 c_{2} & =0 \tag{c}
\end{align*}
$$

(C) implies $C_{1}=-4 C_{2}$. Then (B) implies

$$
1=c_{1}+2 c_{2}=-4 c_{2}+2 c_{2}=-2 c_{2} \text {, so } c_{2}=\frac{-1}{2} .
$$

So $c_{1}=-4 c_{2}=2=4 / 2$.
(A) implies $c_{0}=-c_{1}-c_{2}=-4 / 2+1 / 2=-3 / 2$.

Alternate: $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ a & 1 & 4\end{array}\right]$ is an example of a Vandermonde matrix, which is known to be invertible. Hence $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4\end{array}\right]\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{c}\text { any } \\ \text { given } \\ \text { vector }\end{array}\right]$ has a unique solution.
Since $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4\end{array}\right]\left[\begin{array}{c}-3 / 2 \\ 4 / 2 \\ -1 / 2\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, this is the unique solution.
$2(6)$

$$
\begin{aligned}
& c_{c} f\left(x_{0}\right)+c_{1} f\left(x_{c}+h\right)+c_{2} f\left(x_{0}+2 h\right) \\
= & \left(c_{0}+c_{1}+c_{2}\right) f\left(x_{0}\right) \\
+ & \left(c_{1}+2 c_{2}\right) h f^{\prime}\left(x_{0}\right) \\
+ & \left(c_{1}+4 c_{2}\right) \frac{h^{2}}{4} f^{\prime \prime}\left(x_{0}\right) \\
+ & O\left(h^{3}\right) m_{3}
\end{aligned}
$$

(here the constant in the $O\left(h^{3}\right)$ notation really depends on c_{1}, c_{2}, So one could write $O\left(h^{3}\right) m_{3}$ as $O\left(h^{3}\right)\left(\left|c_{1}\right|+\left|c_{2}\right|\right) M_{3}$ where now $O\left(L^{3}\right)$ is bounded by an absolute constant).

Hence the above equals $h f^{\prime}\left(x_{0}\right)+O\left(h^{3}\right) M_{3}$
iff c_{0}, c_{1}, c_{2} satisfies the system in part (a), i.e. $c_{0}=\frac{-3}{2}, c_{1}=\frac{4}{2}, c_{2}=\frac{-1}{2}$.

2(c) Part (b) implies that

$$
\frac{-\left(\frac{3}{2}\right) f\left(x_{0}\right)+\binom{4}{2} f\left(x_{0}+h\right)-\left(\frac{1}{2}\right) f\left(x_{0}+2 h\right)}{h}=f^{\prime}\left(x_{0}\right)+O\left(h^{2}\right) m_{2}
$$

which is essentially the 3-point formula in the middle of page $411,14.1 .2(b)$ in [A\&G]

2(d) This would give you a formula

$$
\begin{aligned}
& \frac{c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{0}+h\right)+c_{2} f\left(x_{0}+2 h\right)+c_{3} f\left(x_{0}+3 h\right)}{h} \\
& =f^{\prime}\left(x_{0}\right)+o\left(h^{3}\right) m_{4}, \text { i.e. a four-point }
\end{aligned}
$$

formula for $f^{\prime}\left(x_{0}\right)$ with error term $O\left(h^{3}\right)$, Father than $O\left(h^{2}\right)$ in parts (a, b, c).

This would follow from Taylor series similar to part (b), where for
$l=0,1,2,3$ we write

$$
\begin{gathered}
f\left(x_{0}+l h\right)=f\left(x_{0}\right)+\frac{l h}{1} f^{\prime}\left(x_{0}\right)+\frac{(l h)^{2}}{2} f^{\prime \prime}\left(x_{0}\right) \\
\quad+\frac{(l h)^{3}}{6} f^{\prime \prime \prime}\left(x_{0}\right)+l^{4} O\left(h^{4}\right) M_{4}
\end{gathered}
$$

3(a) $y^{\prime}=y^{3} \Rightarrow \frac{d y}{d t}=y^{3} \Rightarrow \frac{d y}{y^{3}}=d t$

$$
\Rightarrow \quad \int \frac{d y}{y^{3}}=\int d t \Rightarrow \frac{y^{-2}}{-2}+C_{1}=t+C_{2}
$$

or $\frac{1}{-2 y^{2}}=t+C$ so $y^{2}=\frac{1}{-2(t+c)}$
so $y(t)=y=\left(\frac{1}{-2(t+c)}\right)^{1 / 2}$
$3(b)$ If $y(1)=1$, then $\left(\frac{1}{-2(1+c)}\right)^{1 / 2}=y(1)=1$
so $\frac{1}{-2(1+c)}=1$ so $1+C=\frac{1}{-2}$ so $C=-1-\frac{1}{2}=\frac{-3}{2}$
So $y(t)=\left(\frac{1}{-2\left(t-\frac{3}{2}\right)}\right)^{1 / 2}=\left(\frac{1}{3-2 t}\right)^{1 / 2}$
3(c) Similarly, $\frac{d y}{d t}=y^{4} \Rightarrow \frac{d y}{y^{4}}=d t$

$$
\Rightarrow \frac{-1}{3 y^{3}}=t+C
$$

If $y(1)=1$, then $\frac{-1}{3}=1+C$ so $C=\frac{-4}{3}$
so $\frac{-1}{3 y^{3}}=t-\frac{4}{3}$ so $y^{3}=\frac{1}{-3\left(t-\frac{4}{3}\right)}$
So $y=y(t)=\left(\frac{1}{4-3 t}\right)^{1 / 3}$
3(d) For part (b), $y(t) \rightarrow \infty$ when $t \rightarrow \frac{3}{2}$
(since then $3-2 t \rightarrow 0$ and so $\left.\left(\frac{1}{3-2 t}\right)^{1 / 2} \rightarrow \infty\right)$
3(e) For part (c), $y(t) \rightarrow \infty$ when $t \rightarrow \frac{4}{3}$
(Ha) A plot indicates $z(t)>y(t)$ for all $O<t<4 / 3$ (and $z(t) \rightarrow \infty$ as $t \rightarrow 4 / 3)$.
(4b) Solution 1: Since the functions $y \mapsto y^{3} \quad$ and $z \longmapsto z^{4}$ are Lipschitz (i.e. differentiable), the equations

$$
\begin{aligned}
& y^{\prime}=y^{3}, y(1)=1 \quad \text { and } \\
& z^{\prime}=z^{4}, z(1)=1
\end{aligned}
$$

can be solved via separation of variables.
Hence we can use the computation in problem 3.

4(b) Solution 2: Calculate directly:

$$
\begin{aligned}
& y(t)=(3-2 t)^{-1 / 2} \text {, so } y(1)=(3-2 \cdot 1)^{-1 / 2} \\
& =1^{-1 / 2}=1
\end{aligned}
$$

and

$$
\begin{gathered}
y^{\prime}(t)=\left(-\frac{1}{2}\right)(3-2 t)^{-3 / 2}(-2) \\
=(3-2 t)^{-3 / 2}=y^{3}
\end{gathered}
$$

and similarly for $z=z(t)$.
(c)

$$
\begin{aligned}
& y^{\prime}(1)=(y(1))^{3}=1^{3}=1 \\
& z^{\prime}(1)=(z(1))^{4}=1^{4}=1
\end{aligned}
$$

(d) $y^{\prime}=y^{3} \Rightarrow y^{\prime \prime}=\left(y^{3}\right)^{\prime}=3 y^{2} y^{\prime}$.

Hence $y^{\prime \prime}(1)=3(y(1))^{2} y^{\prime}(1)=3$, using parts (b, c). Similarly for $z^{\prime \prime}(1)$.
(He) Let $u(t)=z(t)-y(t)$.
Then $u(1)=z(1)-y(1)=1-1=0$

$$
\begin{aligned}
& u^{\prime}(1)=z^{\prime}(1)-y^{\prime}(1)=1-1=0 \\
& u^{\prime \prime}(1)=z^{\prime \prime}(1)-y^{\prime \prime}(1)=4-3=1
\end{aligned}
$$

Hence, by the usual calculus test, since $u^{\prime}(1)=0$ and $u^{\prime \prime}(1)=1$, u has a local minimum at $t=1$.

Since $u(1)=0$, it follows that $u(t)^{>0}$ for t near 1 .
$4(e)$ Alternative (More direct)
Since $y(t)$ is continuous near $t=1$, and $y^{\prime}(t)=(y(t))^{3}, y^{\prime}$ is continuous near $t=1$.
Since $y^{\prime \prime}=3 y^{2} y^{\prime}, y^{\prime \prime}$ "

Hence for any h we have

$$
y(1+h)=y(1)+h y^{\prime}(1)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

with ξ between 1 and $1+h$. Since
$y^{\prime \prime}(1)=3$, and $y^{\prime \prime}$ is continuous,
$y^{\prime \prime}(\xi) \leqslant 3.01$ for ξ near 1 , so
for h new c,

$$
\begin{aligned}
y(1+h) & =y(1)+h y^{\prime}(1)+\frac{h^{2}}{2} y^{\prime \prime}(\xi) \\
& \leqslant 1+h+\frac{h^{2}}{2} 3.01
\end{aligned}
$$

Since $z^{\prime \prime}(1)=4 \quad\left(\right.$ and $\left.z(1)=z^{\prime}(1)=1\right)$ we similarly have that for h near 0 ,

$$
\begin{aligned}
z(1+h) & \geq 1+h+\frac{h^{2}}{2} 3.99 \\
& \geqslant 1+h+\frac{h^{2}}{2} 3.01 \geq y(1+h) .
\end{aligned}
$$

Note: This holds for $|h|$ near 0 , so h can be negative.

Remark: Since $y(1)=y^{\prime}(1)=1$ and
$y^{\prime \prime}(1)=3$, we really know that

$$
y(1+h)=y(1)+h y^{\prime}(1)+\frac{h^{2}}{2}\left(y^{\prime \prime}(1)+o(h)\right)
$$

where $o(h)$ is a function $\rightarrow 0$ as $h \rightarrow 0$. This is the "little-oh" notation o(h), Which is convenient.

