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Please note:

(1) You must justify all answers; no credit is given for a correct answer without
justification.

(2) Proofs should be written out formally.
(3) Homework that is difficult to read may not be graded.
(4) You may work together on homework in groups of up to four, but you

must write up your own solutions individually and must acknowl-
edge with whom you worked. You must also acknowledge any sources
you have used beyond the textbook and two articles on the class website.

———————————————————

(1) Consider the ODE y′ = f(y) where f(y) = 4y + 5.
(a) Describe the recurrence given by Euler’s method with step size h > 0

for solving this ODE.
(b) Describe the recurrence given by the Explicit Trapezoidal method

(page 494 of [A&G]) with step size h > 0 for solving this ODE.
(c) Find the exact solution to the above ODE subject to y(0) = 1, and for

small h > 0 show that

y(h) = 1 + 9h+ 18h2 + 24h3 +O(h4)

[Hint: for |δ| small, we have eδ = 1 + δ + δ2/2 + δ3/3! +O(δ4).]
(d) Show that for Euler’s method, the difference between y1 and the true

value of y(h) is O(h2).
(e) Show that for the Explicit Trapezoidal method, the difference between

y1 and the true value of y(h) is O(h3).
(f) Say that a, b ∈ R with a 6= 1. Find the general solution to the recur-

rence equation yn+1 = ayn + b.
(g) Use the last part to solve the recurrence given in Euler’s method, and

solve it for the initial condition y0 = 1.
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(h) Let m ∈ N and let h = 1/m in Euler’s method; compare the exact
value of y(2) of the above ODE subject to y(0) = 1 with the Euler’s
method recurrence value of y2m subject to y0 = 1. Show that they
differ to within O(1/m) as m→ ∞.

(i) (This part won’t be graded; so no need to hand it in.) Do parts (g,h)
with Euler’s method replaced by the Explicit Trapezoidal method,
and show the numerical approximation and the exact answer differ by
O(1/m2) (you might also check that the difference is not as small as
O(1/m3), so O(1/m2) is the “true order of the difference”).
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