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Please note:

(1) You must justify all answers; no credit is given for a correct answer without
justification.

(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too

difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you

must submit a single homework as a group submission under
Gradescope.

(5) At times we may only grade part of the homework set. The number of
points per problem (at times indicated) may be changed.

———————————————————–

For this problem set, “the handout” refers to the article
“CPSC 303: What the Condition Number Does and Does
Not Tell Us.”

(1) (0 to -8 points) Who are your group members? Please print if writing by
hand. [See (4) above.]

(2) The point of this exercise is to compare monomial interpolation (Sec-
tion 10.2 of [A&G]) with Lagrange interpolation (Section 10.3).
(a) Let p(x) = c0 + c1x be the unique polynomial of degree at most 1 such

that
p(2) =

√
2, p(2.01) =

√
3,

In exact arithmetic,

p(2.005) =

√
2 +
√

3

2
,

since 2.005 is the midpoint between 2 and 2.01. Hence one can also
write:

p(2.005) = c0 + c1(2.005).
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Solve for c0, c1, using the Vandermonde matrix and the formula derived
in class (see also page 300 of [A&G]). [Hint: you may find the following
MATLAB commands useful:
A = fliplr( vander([2 2.01]))

y = [sqrt(2);sqrt(3)]

c = A^(-1)*y

trueVal = (y(1)+y(2))/2

monoVal = c(1) + c(2) * 2.005

What does MATLAB report for the absolute error in(
c0 + c1(2.005)

)
as an approximation for

√
2 +
√

3

2

(in absolute value)? What about the relative error?
(b) Same question, where

p(2) =
√

2, p(2 + 10−6) =
√

3,

and you want to compute p(2 + 10−6/2). [Hint: Recall 5 × 10−7 in
MATLAB notation is 5e-7 or 5.0e-7.]

(c) Same question, where

p(2) =
√

2, p(2 + 10−10) =
√

3,

and you want to compute p(2 + 10−10/2). [Hint: Recall 5 × 10−11 in
MATLAB notation is 5e-11 or 5.0e-11.]

(d) What is the Lp-condition number of A in part (c) for p =∞? Do this
FIRST by typing cond(A,Inf), and SECOND check this by examining
the values of A and A−1 and using the formula∥∥∥∥∥

[
a b
c d

]∥∥∥∥∥
∞

= max
(
|a|+ |b|, |c|+ |d|

)
.

(i.e., given in class and proven on the previous homework).
(e) Double precision for standard numbers has a relative precision error

after rounding of roughly 2−53 = 1.1102 . . .×10−16 in the worst case.1

If you multiply this by the condition number of A (and this is only
a very rough indication of the precision you’d expect to lose in c. . . ),
what do you get?

(f) Now use the Lagrange formula for p(x) in part (c):

p(x) = y0
x− x1
x0 − x1

+ y1
x− x0
x1 − x0

to calculate p(2 + 10−10/2); what are the absolute and relative errors
in this calculation compared with the true value?

1This reason is that a true value of 1+ 2−53 has to stored as either 1 or 1+ 2−52 or a number
farther away, resulting in a relative error of 2−53/(1+2−53); of course, in the best case the relative

error is 0.
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(g) Now use the Lagrange formula for p(x) in part (c):

p(x) = y0
x− x1
x0 − x1

+ y1
x− x0
x1 − x0

to calculate p(2 + 10−10/3), and compute the true value of

p(2 + 10−10/3) = (2/3)
√

2 + (1/3)
√

3

via the MATLAB line (2/3)*sqrt(2)+(1/3)*sqrt(3). What are the
absolute and relative errors in the Lagrange formula computation as
compared with the true value?

(3) (a) Let p(x) = c0 + c1x+ c2x
2 be the unique polynomial of degree at most

2 such that

p(2) =
√

2, p(2.01) =
√

3, p(2.02) =
√

5.

Let

α2 = p(2.005)

(we will explain the subscript 2 in the notation α2 below). Approxi-
mate α as follows: first solve for c = (c0, c1, c2) as c = A−1y using the
formula derived in class (see also page 300 of [A&G]) Ac = y where
y = (y0, y1, y2) and A is a Vandermonde matrix.

(i) What value do you get for α2? Report this as a base 10 num-
ber 1.d1d2d3d4d5d6d7 . . . (so drop the remaining digits, rather
than round up/down, and make sure you type format long into
MATLAB if you aren’t seeing enough decimal places).

(ii) What does MATLAB report for the ∞-condition number of A?
(Here a few decimal places suffice, e.g., 5.37 . . .× 105.)

You may find some of the following lines of MATLAB code helpful:
help format

format long

A = fliplr( vander([2, 2.01, 2.02]))

y = [sqrt(2);sqrt(3);sqrt(5)]

c = A^(-1)*y

% For the result below, note that MATLAB indexing

% begins with 1, not 0

monoVal = c(1) + c(2) * 2.005 + c(3) * (2.005)^2

cond(A,Inf)

(b) Let q(x) be the unique polynomial of degree at most 2 such that

q(2) =
√

2, q(2 + 10−6) =
√

3, q(2 + 10−6 · 2) =
√

5.

Let

α6 = q(2 + 10−6/2).

Approximate α6 in the same way as you did α2 in part (a).
(i) What value do you get for α6? Report this as a base 10 num-

ber 1.d1d2d3d4d5d6d7 . . . (so drop the remaining digits, rather
than round up/down, and make sure you type format long into
MATLAB if you aren’t seeing enough decimal places).

(ii) What does MATLAB report for the ∞-condition number of A?
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(c) Same question in part (b), with q(x), 10−6, α6 respectively replaced
with r(x), 10−7, α7.

(d) Same question in part (b), with q(x), 10−6, α6 respectively replaced
with s(x), 10−8, α8.

(e) Let p be the polynomial in part (a), and q that in part (b). Show that
f(y) = p(2 + y10−2) − q(2 + y10−6) is a polynomial in y of degree 2
such that f(y) = 0 for y = 0, 1, 2.

(f) Use the previous part to show that (in an exact computation) α2 = α6.
(g) Use the ideas of the two previous parts to argue that in exact compu-

tations, α6 = α7.
(h) Now use the Lagrange formula for quadratic polynomials,

p(x) = y0
x− x1
x0 − x1

x− x2
x0 − x2

+ y1
x− x0
x1 − x0

x− x2
x1 − x2

+ y2
x− x0
x2 − x0

x− x1
x2 − x1

to calculate α2, α7, α8 and report all the decimal places that MAT-
LAB’s format long reports. You may find the following MATLAB
lines helpful for the α2 calculation (note: an earlier version had 2’s
instead of 10’s below):
n=2

x0 = 2 ; x1 = 2 + 10^(-n) ; x2 = 2 + 10^(-n) * 2;

x = 2 + 10^(-n)/2;

y0 = sqrt(2); y1 = sqrt(3); y2 = sqrt(5);

L0 = (x-x1) * (x-x2) / ( (x0-x1) * (x0-x2) );

L1 = (x-x0) * (x-x2) / ( (x1-x0) * (x1-x2) );

L2 = (x-x0) * (x-x1) / ( (x2-x0) * (x2-x1) );

p = y0 * L0 + y1 * L1 + y2 * L2

For the next problem(s), recall that if A is a square, invertible matrix,
and if Axtrue = btrue (representing the “true values” of vector x,b) and
Axapprox = bapprox (representing the “approximate values” or “observed
values by some experiment”), in class we defined the p-norm relative error
(for 1 ≤ p ≤ ∞)

(1) RelErrorp(xapprox,xtrue)
def
=
‖xapprox − xtrue‖p

‖xtrue‖p
(assuming xtrue 6= 0) and similarly with x replaced with b. (See also
[A&G], pages 3 and Section 5.8.) In class we proved that

(2) RelErrorp(xapprox,xtrue) ≤ κp(A) RelErrorp(bapprox,btrue)

where

κp(A) = ‖A‖p
∥∥A−1∥∥

p
,

and, moreover, that for any A there are xtrue,btrue,xapprox,bapprox for
which equality holds in (2). Equivalently, if xerror = xapprox − xtrue and
similarly for berror, then (2) is equivalent to

‖xerror‖p
‖berror‖p

‖btrue‖p
‖xtrue‖p

≤ κp(A),
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or equivalently

(3)
‖A−1berror‖p
‖berror‖p

‖Axtrue‖p
‖xtrue‖p

≤ κp(A).

([A&G] refer to berror as the residual, and denote it r̂.)
Conversely, for any A, p, here is a recipe for producing cases where (2)

holds with equality: let berror and xtrue be arbitrary (nonzero) vectors such
that

(4)
‖A−1berror‖p
‖berror‖p

= ‖A−1‖p,
‖Axtrue‖p
‖xtrue‖p

=
∥∥A∥∥

p

(such vectors do exist); then (3) holds, and so working backwards we set

(5) xerror = A−1berror, btrue = Axtrue,

and

(6) xapprox = xtrue + xerror, bapprox = btrue + berror,

yielding an example for which (2) holds with equality.

(4) Let ε > 0 be a real number (which we think of as small), and let

(7) A =

[
1 2
1 2 + ε

]
,

and hence

A−1 =
1

ε

[
2 + ε −2
−1 1

]
,

(a) What are ‖A‖∞ and ‖A−1‖∞?
(b) Show that ∥∥∥∥∥A

[
1
1

]∥∥∥∥∥
∞

= ‖A‖∞

∥∥∥∥∥
[
1
1

]∥∥∥∥∥
∞

,

and for any δ ∈ R∥∥∥∥∥A−1
[
δ
−δ

]∥∥∥∥∥
∞

=
∥∥A−1∥∥∞

∥∥∥∥∥
[
δ
−δ

]∥∥∥∥∥
∞

.

(c) Use the previous part to show that

berror =

[
δ
−δ

]
, xtrue =

[
1
1

]
satisfy (4); then let xerror satisfying (5), and show that the resulting
xapprox is

(8) xapprox(δ) =

[
1
1

]
+

[
4 + ε
−2

]
δ

ε

(d) Show that xapprox(0) equals xtrue above.
(e) Now check your work: let xapprox(δ) be as in (8), and let δ 6= 0.

(i) Evaluate

RelError∞(xapprox,xtrue) =
‖xapprox(δ)− xapprox(0)‖∞

‖xapprox(0)‖∞
.
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(ii) Evaluate

RelError∞(Axapprox, Axtrue) =
‖Axapprox(δ)−Axapprox(0)‖∞

‖Axapprox(0)‖∞
.

(iii) Divide the result in (i) by (ii) and show that the result is equal
to

κ∞(A) = ‖A‖∞‖A−1‖∞
(which you should find to be (3 + ε)(4 + ε)/ε, using part (a)).

(5) Let ε > 0 be fixed, and let A be given by (7). Consider the function of a
real η given by

x(η)
def
=

[
1
1

]
+

[
2
−1

]
η.

(a) Show that for any η 6= 0 we have

(9)
RelError∞

(
x(η),x(0)

)
RelError∞

(
Ax(η), Ax(0)

) =
6 + 2ε

ε
.

(b) Let xapprox(δ) be as in (8) with δ 6= 0. From Problem (4) we know
that

(10)
RelError∞

(
xapprox(δ),xapprox(0)

)
RelError∞

(
Axapprox(δ), Axapprox(0)

) = κ∞(A) =
12 + 7ε+ ε2

ε
,

which is roughly twice as large as the quantity in (9) for small ε > 0.
Nonetheless, show that if η = 2δ/ε, and |η| ≤ 1/4

RelError∞
(
xapprox(δ),x(2δ/ε)

)
≤ |δ|.

[Hint: show that ‖x(η)‖∞ ≥ 1 for all η ∈ R, by considering η ≥ 0 and
η < 0 separately.]

[Hence xapprox(δ),x(2δ/ε) can be arbitrarily relatively close, and xapprox(0) =
x(0) = xtrue, but their loss of precision in solving Ax = b to the same “true
solution” can differ by roughly a factor of two (i.e., the right-hand-sides of
(9) and (10)).]

(6) Fix ε > 0. In interpolation with a line through the data points (x0, y0) and
(x1, y1), we get a system of equation Ac = y where A is as in (7) whern
x0 = 2 and x0 = 2 + ε. But this system, namely

(11)

[
1 2
1 2 + ε

] [
c0
c1

]
=

[
y0
y1

]
,

is equivalent to [
1 2
0 ε

] [
c0
c1

]
=

[
y0

y1 − y0

]
,

which is equivalent to

(12)

[
1 2
0 1

] [
c0
c1

]
=

[
y0

(y1 − y0)/ε

]
.
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(See the page 2 of “CPSC 303: What the Conidition Number Does and
Does Not Tell Us,” and note a similar matrix on Homework 5.) But we
easily compute the condition numbers

(13) κ∞(A) = κ∞

([
1 2
1 2 + ε

])
=

12 + 7ε+ ε2

ε
, κ∞

([
1 2
0 1

])
= 9.

Doesn’t it seem strange that (11) involves a condition number tending to
infinity as ε→ 0, and the equivalent (12) has a fixed condition number???
(This is a rhetorical question, not part of Problem 6.) The point of this
exercise is to explain make this phenomenon seem less strange. [Recall that
the fact that κ∞(A) = (12 +O(ε))/ε was an important indication of a type
of degeneracy in interpolation when x0 = 2 and x1 = 2 + ε and ε→ 0.]

If x(η) is as in Problem 5, and for some η 6= 0 we set

(14) c = x(0) =

[
1
1

]
capprox = x(η),

then Problem 5 shows that we have

(15) RelError∞
(
capprox, c

)
=

6 + 2ε

ε
RelError∞

(
Acapprox, Ac

)
.

On the other hand, (12) and (13) implies that

(16) RelError∞
(
capprox, c

)
≤ 9 RelError∞

(
Bcapprox, Bc

)
where Bc takes Ac and applies the function (y0, y1) 7→ (y0, (y1 − y0)/ε).
Hence the last two equations imply that

(17) 9 RelError∞
(
Bcapprox, Bc

)
≥ 6 + 2ε

ε
RelError∞

(
Acapprox, Ac

)
.

In other words passing from A to B in the above introduces a factor of
order 1/ε.

(Here is what you are asked to do for this problem:)
(a) Verify (17) directly.
(b) If x(η) is replaced with xapprox(δ), write down the inequality that

results in place of (17) (but you don’t have to verify it directly).
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