EXTRA PRACTICE 5, CPSC 303, SPRING 2024

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2024. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(1) Find the general solution to the recurrence equation

$$
x_{n+2}-7 x_{n+1}+12 x_{n}=n+5
$$

(2) Find the general solution to the ODE

$$
y^{\prime \prime}-7 y^{\prime}+12 y=t+3
$$

(3) Find the general solution to the recurrence equation

$$
x_{n+2}-6 x_{n+1}+9 x_{n}=n+5 .
$$

(4) Find the general solution to the ODE

$$
y^{\prime \prime}-6 y^{\prime}+9 y=t+3
$$

(5) What is the general solution to the recurrence equation

$$
(\sigma-4)(\sigma-5)^{2}\left(x_{n}\right)=0 ?
$$

Write down a formula, and show that for any $x_{0}, x_{1}, x_{2} \in \mathbb{R}$, you can find the (unique) solution to this recurrence.
(6) Let $p(t)$ is any polynomial of degree $d \geq 1$, i.e., of the form $c_{d} t^{d}+c_{d-1} t^{d-1}+$ $\cdots+c_{0}$ with $c_{d} \neq 0$ and $d \geq 1$. Then if $y(t)=p(t) e^{3 t}$ we have

$$
\left(\frac{d}{d t}-3\right) y(t)=q(t) e^{3 t}
$$

where $q(t)$ is of degree $d-1$.

[^0](7) In class we've seen that $(1 / 2)^{1075}$ is reported by MATLAB as 0 , and $(1 / 2)^{1074}$ as $4.9406 \ldots \times 10^{-324}$.
(a) If you type $(3 / 2) *(1 / 2)^{\wedge} 1074$ into MATLAB, can MATLAB tell you that this number is roughly $7.4109 \ldots \times 10^{-324}$ (since 1.5 times 4.9406 is roughly 7.4109)? Does double precision allow this? Explain this in terms of the subnormal numbers
$$
\pm 0 . b_{1} \ldots b_{52} \times 2^{-1022}
$$
using the fact that $(3 / 2)=1+(1 / 2)$, and therefore is represented as 1.1 in binary.
(b) If you type $(3 / 2) *(1 / 2)^{\wedge} 1073$, will double precision be able to record this number exactly? Explain, based on what we know about subnormal numbers.
(c) What does MATLAB report for the value of (3/2)*(1/2) ^(1073)* 2^1073 into MATLAB, will you get 1.5000... ? Explain in terms what we know about double precision.
(d) What does MATLAB report for the value of ((3/2)*(1/2) ~ (1073)* $\left.2^{\wedge} 1000\right) * 2^{\wedge} 73$ into MATLAB? Explain in terms what we know about double precision.
(e) If you type $(5 / 4) *(1 / 2) \wedge 1073$, will double precision be able to record this number exactly? Explain, based on what we know about subnormal numbers. [Hint: $5 / 4=1+0 / 2+1 / 4$, and hene $5 / 4=1.01$ in binary.]
(8) MORE PROBLEMS MAY BE ADDED.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

