GROUP HOMEWORK 5, CPSC 303, SPRING 2024

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2024. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(5) At times we may only grade part of the homework set. The number of points per problem (at times indicated) may be changed.
(1) (0 to -6 points) Who are your group members? Please print if writing by hand. [See (4) above.]
(2) The point of this exercise is to define a type of ODE known as central force problem, and to show that such ODE's satisfy a conservation of energy. In this exercise $\left\|\|\right.$ refers to the L^{2} norm $\| \|_{2}$. Let $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{2}$, i.e., $\mathbf{x}=\mathbf{x}(t)=\left(x_{1}(t), x_{2}(t)\right)$, where x_{1}, x_{2} are functions $\mathbb{R} \rightarrow \mathbb{R}$, and similary for $\mathbf{z}=\mathbf{z}(t)=\left(z_{1}(t), z_{2}(t)\right)$.
(a) With the usual dot product:

$$
\mathbf{x} \cdot \mathbf{z}=x_{1} z_{1}+x_{2} z_{2}
$$

(hence all the above depend on t), show that

$$
\frac{d}{d t}(\mathbf{x} \cdot \mathbf{z})=\mathbf{x} \cdot \dot{\mathbf{z}}+\dot{\mathbf{x}} \cdot \mathbf{z}
$$

where denotes $d / d t$ (as usual in celestial mechanics).
(b) Show that

$$
\frac{d}{d t}\left(\|\mathbf{x}\|^{2}\right)=\frac{d}{d t}(\mathbf{x} \cdot \mathbf{x})=2 \mathbf{x} \cdot \dot{\mathbf{x}}
$$

[^0](c) Show that if m is a constant, then
$$
\frac{d}{d t}\left(m\|\dot{\mathbf{x}}\|^{2}\right)=2 m \dot{\mathbf{x}} \cdot \ddot{\mathbf{x}}
$$
(d) Show that
$$
\frac{d}{d t}\|\mathbf{x}\|=\frac{d}{d t} \sqrt{x_{1}^{2}+x_{2}^{2}}=\frac{1}{\|\mathbf{x}\|} \mathbf{x} \cdot \dot{\mathbf{x}}
$$
(e) Show that if $U:(0, \infty) \rightarrow \mathbb{R}$ is a differentiable function, whose derivative is u, then
$$
\frac{d}{d t} U(\|\mathbf{z}\|)=u(\|\mathbf{z}\|) \frac{1}{\|\mathbf{z}\|} \mathbf{z} \cdot \dot{\mathbf{z}}
$$
(f) We say that a function $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ satisfies a central force law if for some real $m>0$ and $u:(0, \infty) \rightarrow \mathbb{R}$ we have
$$
m \ddot{\mathbf{x}}=-m u(\|\mathbf{x}\|) \frac{\mathbf{x}}{\|\mathbf{x}\|}
$$
(at times u may extend to a function $[0, \infty) \rightarrow \mathbb{R}$, but for Newton's Law of Gravitation, $u(0)=+\infty)$. Show that in this case
$$
\operatorname{Energy}=\operatorname{Energy}(t) \stackrel{\text { def }}{=} \frac{1}{2} m\|\dot{\mathbf{x}}\|^{2}+m U(\|\mathbf{x}\|)
$$
is independent of t (where, as in part(e), $U^{\prime}=u$). [Hint: show that $d / d t$ applied to Energy (t) is zero.] [An earlier version of the homework had a - instead of a + in (2).]
(3) Consider the central force problem (1), where $\mathbf{x}: \mathbb{R} \rightarrow \mathbb{R}^{2}$, for fixed u, U as in Problem (2). We may write (1) as a 4 -dimensional ODE by setting $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(\dot{x}_{1}, \dot{x}_{2}, x_{1}, x_{2}\right)$ and letting
$$
r=\|\mathbf{x}\|=\sqrt{y_{3}^{2}+y_{4}^{2}}
$$
and hence

(3) $\quad \frac{d}{d t}\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]=\mathbf{f}(\mathbf{y}), \quad$ where $\quad \mathbf{f}(\mathbf{y})=\left[\begin{array}{c}-u(r) y_{3} /(m r) \\ -u(r) y_{4} /(m r) \\ y_{1} \\ y_{2}\end{array}\right], \quad r=\sqrt{y_{3}^{2}+y_{4}^{2}}$.

Notice that the energy of the system Energy (t) can therefore be written as

$$
E(\mathbf{y})=\frac{1}{2} m\left\|\left(y_{1}, y_{2}\right)\right\|^{2}+m U\left(\left\|\left(y_{3}, y_{4}\right)\right\|\right)
$$

and hence $E(\mathbf{y}(t))$ is independent of t. One way to test the accuracy of numerical (i.e., approximate) solutions to (3) is to see if the approximation to $E(\mathbf{y}(t))$ changes in time. Newton's Law of Gravitation (to predict how planets move around the sun) fixes a real constant $g>0$, and takes $U(r)=$ $-g / r$ and so $u(r)=g / r^{2}$.
(a) Consider the case where $m=g=1$, and we solve (3) subject to

$$
\begin{equation*}
\mathbf{y}(0)=[0,0.8,1,0] . \tag{4}
\end{equation*}
$$

Use MATLAB to generate points $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{N}$ using Euler's method

$$
\mathbf{y}_{i+1}=\mathbf{y}_{i}+h \mathbf{f}\left(\mathbf{y}_{i}\right), \quad i=0,1, \ldots, N-1
$$

with the following values of h, N :
(i) First take $h=0.1$ and $N=600$. (Hence you are approximating $y(t)$ for $0 \leq t \leq i N=60$.) What is $E\left(\mathbf{y}_{0}\right)$, and $E\left(\mathbf{y}_{N}\right)$? Does $E\left(\mathbf{y}_{i}\right)$ always increase, always decrease, or does it fluctuate in both directions? Does the approximate ellipse that \mathbf{y}_{i} traces out (in its 3 rd and 4 th components, which approximates $\mathbf{x}(t)$) seem to get larger in time or get smaller (or is it roughly the same)?
(ii) Next take $h=0.01$ and $N=6000$. (Hence you are still approximating $y(t)$ for $0 \leq t \leq 60$, but presumably the approximation is getting better.) Same questions.
(iii) Same questions with $h=0.001$ and $N=60000$.
(b) Same questions with $h=0.1$ and $N=600$, but this time use the (explicit) trapezoidal method.
[Hint: you are welcome to use the program Euler_Central_Force.m that I'm supplying; and can observe Euler's method in the above three cases by typing each of the three lines:

```
Euler_Central_Force(1,1, [0, .8,1,0], 0.1,600,.05,1)
Euler_Central_Force (1,1, [0, .8,1,0], 0.01, 6000, .05, 10)
Euler_Central_Force (1, \(1,[0, .8,1,0], 0.0001,600000, .05,1000)\)
```

For the trapezoid rule, you'll probably want to modify Euler_Central_Force.m by replacing the line:

```
for i=1:N
    yvals(i+1,:) = yvals(i,:) + h * f( yvals(i,:) );
end
```

with something like:

```
for i=1:N
    Y = yvals(i,:) + h * f( yvals(i,:) );
    yvals(i+1,:) = yvals(i,:) + (h/2) * ( f( yvals(i,:) ) + f( Y ));
end
```

However, you may likely be able to do a better job by writing your own code. Also, you can likely answer these questions without plotting anything; plotting just makes the answers easier to see.]
(4) Consider the recurrence $x_{n+2}-x_{n}=0$.
(a) Write the general solution as $x_{n}=c_{1} r_{1}^{n}+c_{2} r_{2}^{n}$ for some values of r_{1}, r_{2}.
(b) Given the initial conditions $x_{0}=5$ and $x_{1}=7$, solve for c_{1}, c_{2}, and use these values to get a formula for x_{n} for any n.
(c) Given the initial conditions $x_{0}=5$ and $x_{1}=7$, what are the values of $x_{9}, x_{10}, x_{11}, x_{12}$? Was the above method of solving for c_{1}, c_{2} the quickest way to determine these values?
(d) Write the recurrence as $\mathbf{y}_{n+1}=A \mathbf{y}_{n}$, where

$$
\mathbf{y}_{n}=\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]
$$

what is A ? What are the values of $A^{9}, A^{10}, A^{11}, A^{12}$?
(5) Consider the recurrence $x_{n+2}-4 x_{n+1}+4 x_{n}=0$ for all $n \in \mathbb{Z}$, with x_{0}, x_{1} given (but arbitrary).
(a) Since the general solution of this recurrence (seen in class) is $x_{n}=$ $c_{1} 2^{n}+c_{2} n 2^{n}$, solve for c_{0}, c_{1} in terms of x_{0}, x_{1}. Use this to get a formula for x_{n} for given x_{0}, x_{1}.
(b) Write the recurrence as $\mathbf{y}_{n+1}=A \mathbf{y}_{n}$, where

$$
\mathbf{y}_{n}=\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]
$$

what is A ? Using the fact that $2 I-A=N$ where $N^{2}=0$ (the zero matrix), derive a formula for A^{n} for any $n=0,1,2, \ldots$ Use this to derive a formula for x_{n} in terms of x_{0}, x_{1}.
(c) For a small but nonzero ϵ, consider the recurrence

$$
(\sigma-2)(\sigma-2-\epsilon)\left(x_{n}\right)=0
$$

i.e.,

$$
x_{n+2}-(4+\epsilon) x_{n+1}+(4+2 \epsilon) x_{n}=0 .
$$

We can write this as a recurrence $\mathbf{y}_{n+1}=A(\epsilon) \mathbf{y}_{n}$, where

$$
\mathbf{y}_{n}=\left[\begin{array}{c}
x_{n+1} \\
x_{n}
\end{array}\right]
$$

and

$$
A=\left[\begin{array}{cc}
4+\epsilon & -4-2 \epsilon \\
1 & 0
\end{array}\right]
$$

From the general theory of recurrences, we know that A has an eigenvalue 2 with eigenvector [$2 ; 1$], and an eigenvalue $2+\epsilon$ with eigenvector $[2+\epsilon ; 1]$, and hence
$A(\epsilon)=S(\epsilon)\left[\begin{array}{cc}2 & 0 \\ 0 & 2+\epsilon\end{array}\right](S(\epsilon))^{-1}, \quad$ where $\quad S=\left[\begin{array}{cc}2 & 2+\epsilon \\ 1 & 1\end{array}\right]$
where

$$
S=\left[\begin{array}{cc}
2 & 2+\epsilon \\
1 & 1
\end{array}\right]
$$

For any n, find

$$
\lim _{\epsilon \rightarrow 0}(A(\epsilon))^{n}
$$

using (5). Show that it agrees with the matrix in part (b). [Hint: the formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

shows that

$$
(S(\epsilon))^{-1}=\frac{1}{-\epsilon}\left[\begin{array}{cc}
1 & -2-\epsilon \\
-1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& \text { it suffices to write } \\
& S(e)=M_{1}+\epsilon M_{2}, \quad\left[\begin{array}{cc}
2 & 0 \\
0 & 2+\epsilon
\end{array}\right]^{n}=M_{3}+\epsilon M_{4}+O\left(\epsilon^{2}\right), \quad\left[\begin{array}{cc}
1 & -2-\epsilon \\
-1 & 2
\end{array}\right]=M_{5}+\epsilon M_{6}, \\
& \text { and to consider the constant and order } \epsilon \text { terms of } \\
& \left(M_{1}+\epsilon M_{2}\right)\left(M_{3}+\epsilon M_{4}\right)\left(M_{5}+\epsilon M_{6}\right)
\end{aligned}
$$

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

