GROUP HOMEWORK 4, CPSC 303, SPRING 2024

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2024. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(5) At times we may only grade part of the homework set. The number of points per problem (at times indicated) may be changed.
(1) (0 to -6 points) Who are your group members? Please print if writing by hand. [See (4) above.]
(2) Recall the (forward) Euler's method (see class notes or [A\&G], page 485, and the (explicit) trapazoidal method (class notes or [A\&G], page 494), which solves $y^{\prime}=f(t, y)$ subject to $y\left(t_{0}\right)=y_{0}(1)$ choosing a small $h>0$ and setting $t_{i}=t_{0}+i h$ (as usual), and (2) takes y_{i} (an approximation of $\left.y\left(t_{i}\right)\right)$ to produce y_{i+1}, for $i=0,1,2, \ldots$ via the formula the two formulas:

$$
Y_{i}=y_{i}+h f\left(t_{i}, y_{i}\right), \quad y_{i+1}=y_{i}+h \frac{f\left(t_{i}, y_{i}\right)+f\left(t_{i+1}, Y_{i}\right)}{2}
$$

(hence Y_{i} is what Euler's method gives for y_{i+1}).
(a) Consider the trapezoidal method for $y^{\prime}=y$ with $y\left(t_{0}\right)=y_{0}$. Write down a formula for y_{i+1} of the trapezoidal method in terms of y_{i}.
(b) Say that we want to approximate $y(1)$ given $y(0)=1$ (i.e., $t_{0}=0$, $y_{0}=1$). Choose a natural N (which we think of as large), set $h=1 / N$; show that y_{N} in the trapezoidal method approximatino of $y(1)$ equals

$$
y_{N, \text { trap }}=\left(1+\frac{1}{N}+\frac{1}{2 N^{2}}\right)^{N}
$$

[^0](c) Show that Euler's method for the same ODE and initial condition gives $y_{N, \mathrm{Eul}}=(1+1 / N)^{N}$.
(d) Recall that actual solution to $y^{\prime}=y$ with $y(0)=1$ has $y(1)=e$. Show that $\ln \left(y_{N, \text { trap }}\right)$ is closer to the actual value of $\ln (y(1))$ (namely $\ln (e)=1)$ than $\ln \left(y_{N, \text { Eul }}\right)$, as $N \rightarrow \infty$ (i.e., for all N sufficiently large). [It may be helpful to recall that $\ln (1+\epsilon)=\epsilon-\epsilon^{2} / 2+O\left(\epsilon^{3}\right)$ for $|\epsilon|$ small.]
(3) In this exercise we will solve the ODE $y^{\prime}-2 y=t^{2}$.
(a) Show that there are constants a, b, c such that $y(t)=a t^{2}+b t+c$ is a solution to $y^{\prime}-2 y=t^{2}$.
(b) Show that if $y^{\prime}-2 y=t^{2}$ and $z^{\prime}-2 z=0$, then $(y+z)^{\prime}-2(y+z)=t^{2}$.
(c) Show that if $y^{\prime}-2 y=t^{2}$ and $(y+z)^{\prime}-2(y+z)=t^{2}$, then $z^{\prime}-2 z=0$.
(d) Solve for all $z^{\prime}-2 z=0$ (which is called the "homogeneous form of the equation $y^{\prime}-2 y=t^{2} "$, and use this to write down the general solution to $y^{\prime}-2 y=t^{2}$.
(e) Show that for any t_{0}, y_{0}, your general solution in part (d) has a unique y such that $y\left(t_{0}\right)=y_{0}$.
(4) In this exercise we will solve the recurrence relation $x_{n+1}-2 x_{n}=n^{2}$ for all $n \in \mathbb{Z}$.
(a) Show that there are constants a, b, c such that $x_{n}=a n^{2}+b n+c$ is a solution to $x_{n+1}-2 x_{n}=n^{2}$.
(b) What is the general solution to $x_{n+1}-2 x_{n}=0$?
(c) Use the above two parts to write a general solution to the recurrence equation $x_{n+1}-2 x_{n}=n^{2}$, and explain your reasoning in term of Problem (2) above and the appropriate notation of the "homogeneous form of the recurrence $x_{n+1}-2 x_{n}=n^{2}$.
(5) (a) At what value of n does MATLAB declare $(1 / 2)^{n}$ to be 0 ? There are a number of ways of doing this, but one way is to examine the values of x generated by:
clear
for $n=1: 1100, x\{n\}=(1 / 2)^{\wedge} n$; end
x
(you may need the extra blank line above if you copy and paste).
(b) Find the general solution to the recurrence $x_{n+2}=(3 / 2) x_{n+1}-(1 / 2) x_{n}$
(c) Find the special case of this recurrence subject to the initial conditions $x_{1}=1$ and $x_{2}=1 / 2$.
(d) Use MATLAB to compute the solution of this recurrence subject to $x_{1}=1$ and $x_{2}=1 / 2$ for $x_{1}, x_{2}, \ldots, x_{100}$ via:

```
clear
x{1} = 1;
x{2} = 1/2;
for n=1:98, x{n+2} = (3/2)*x{n+1}-(1/2)*x{n}; end
```

x
What does MATLAB report for the values of
$\mathrm{x}\{100\} * 2 \sim 99$
$x\{100\} * 2 \wedge 99-1$
(e) Now run the same code to generate $x_{1}, x_{2}, \ldots, x_{1200}$ using
clear
$x\{1\}=1$;
$x\{2\}=1 / 2$;
for $n=1: 1198, x\{n+2\}=(3 / 2) * x\{n+1\}-(1 / 2) * x\{n\} ;$ end
x
Answer the following:
(i) Does MATLAB report $x_{n}=0$ for some value of $n \leq 1200$?
(ii) What is the smallest value of n_{0} such that the values that MATLAB reports for $(1 / 2)^{n_{0}-1}$ and $x\left\{n_{0}\right\}$ are not equal?
(iii) For the value of n_{0}, by examining the values of $(3 / 2) * x\left\{n_{0}-\right.$ $1\}$ and $(1 / 2) * x\left\{n_{0}-2\right\}$, can you see where there an error in precision occurs?
(iv) What repeating pattern do you see in the values of $x\{n\}$ for $n \geq n_{0}$? [Hint: It may be simpler to report this pattern in multiples of $(1 / 2)^{1074}$.] [Warning: if you type something like
for $n=1070: 1100,\{n, x\{n\}, x\{n\} * 2 \wedge 1074\}$, end
then the last cell value will be Inf, since 2^{1074} will yield Inf. However, if you type:
for $n=1070: 1100,\left\{n, x\{n\},\left(x\{n\} * 2^{\wedge} 900\right) * 2^{\wedge} 174\right\}$, end
then you'll get the answers you want.
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

