GROUP HOMEWORK 2, CPSC 303, SPRING 2024

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2024. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Please note:
(1) You must justify all answers; no credit is given for a correct answer without justification.
(2) Proofs should be written out formally.
(3) You do not have to use LaTeX for homework, but homework that is too difficult to read will not be graded.
(4) You may work together on homework in groups of up to four, but you must submit a single homework as a group submission under Gradescope.
(5) At times we may only grade part of the homework set. The number of points per problem (at times indicated) may be changed.
(1) (0 to - 6 points) Who are your group members? Please print if writing by hand. [See (4) above.]
(2) Familiarize yourselves with basic MATLAB syntax, and make sure you understand what each line in the file start_here.txt is doing, and what the commands in exponential_of_a_matrix.txt are doing. Answer the following questions with MATLAB (but just write down the answer).
(a) Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

What is the largest integer n such that each entry of $e^{A}-\sum_{i=0}^{15} A^{i} / i$! is of absolute value at most 10^{-n} ?
(b) Same question for

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

[^0](3) Create the files apple.m, apple_bad.m, apple_worse.m, apple_quiet.m and see how they are implementing Euler's method to solve $y^{\prime}=2 y$ subject to $y(1)=3$, in order to find $y(2)$. (The files apple_bad.m, apple_worse.m will produce error messages; they are just there as a cautionary note.) You might also have a look at chaotic_sqrt.m.
(a) Use Euler's method to solve $y^{\prime}=|y|^{1 / 2}$ subject to $y\left(t_{0}\right)=y_{0}$ to find the value of $y\left(t_{\text {end }}\right)$, where $t_{0}=-2, y_{0}=-1$, and $t_{\text {end }}=2$. Use step size $h=\left(t_{\text {end }}-t_{0}\right) / N$, where $N=1000$ and $N=100,000$. What values do you get?
(b) Same question, but with $y_{0}=0, t_{0}=0$, and $t_{\text {end }}=2$. Use $N=10000$.
(c) Same question, but with $y_{0}=10^{-20}$.
(d) Same question, but with $y_{0}=10^{-40}$.
(e) How do you explain the difference between parts (c,d) and part (b)?
(4) If $y: \mathbb{R} \rightarrow \mathbb{R}$ is a function and $T \in \mathbb{R}$, then the translation of y by T, denoted $\operatorname{Trans}_{T}(y)$, refers to the function z given by
$$
\forall t \in \mathbb{R}, \quad z(t)=y(t-T)
$$
(or, equivalently, $z(t+T)=y(t)$) (hence $z(T)=y(0), z(T+1)=y(1)$, etc.). Similarly, the time reversal of y at time T, denoted $\operatorname{Reverse}_{T}(y)$, refers to the function z given by
$$
\forall t \in \mathbb{R}, \quad z(t)=y(2 T-t)
$$
(hence $z(T)=y(T)$, and $z(T+a)=y(T-a)$).
(a) If $T_{1}, T_{2} \in \mathbb{R}$ and y is any function, what is
$$
\operatorname{Trans}_{T_{1}}\left(\operatorname{Trans}_{T_{2}} y\right)
$$
in simpler terms?
(b) If $T \in \mathbb{R}$ and y is any function, what is
$$
\operatorname{Reverse}_{T}\left(\operatorname{Reverse}_{T}(y)\right)
$$
in simpler terms?
(c) If $T_{1}, T_{2} \in \mathbb{R}$ and y is any function, what is
$$
\operatorname{Reverse}_{T_{1}}\left(\operatorname{Reverse}_{T_{2}}(y)\right)
$$
in simpler terms?
(d) Show that if for some function $f: \mathbb{R} \rightarrow \mathbb{R}, y$ satisfies the $\mathrm{ODE} y^{\prime}=f(y)$ globally (meaning $y^{\prime}(t)=f(y(t))$ for all $\left.t \in \mathbb{R}\right)$, then $z=\operatorname{Trans}_{T}(y)$ satisfies the same ODE, i.e., $z^{\prime}=f(z)$ (globally).
(e) Show directly that if $y(t)=e^{A t}$ for some $A \in \mathbb{R}$, and if z satisfies the ODE $z^{\prime}=A z$ with $z(t)>0$ for some $t \in \mathbb{R}$, then z is a translation of y, PROVIDED THAT $A \neq 0$.
(f) If similarly $y^{\prime}=f(y)$ globally, then $z=\operatorname{Reverse}_{T}(y)$ satisfies the ODE $z^{\prime}=-f(z)$.
(g) If similarly $y^{\prime \prime}=f(y)$ globally, then $z=\operatorname{Reverse}_{T}(y)$ satisfies the ODE $z^{\prime \prime}=f(z)$.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca
URL: http://www.cs.ubc.ca/~ jf

[^0]: Research supported in part by an NSERC grant.

