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The goal of this note is to review our discussion of ODE approximation methods,
[A&G], Sections 16.2 and 16.3, and to discussion on “stiff equations,” including
central force problems.

Note that [A&G] solve y′ = f(t, y) with the initial condition y(a) = c for greater
generality. For simplicity, we solve y′ = f(y) and y(0) = y0 ∈ R. When we want
to use n-dimensional ODE’s, we switch to y = f(y) and y(0) = y0 ∈ R (and hence
y = y(t) is a function R→ Rn); all ODE numerical methods work similarly in the
n-dimensional case, and in the more general case of y′ = f(t,y).

1. Basic Stiff Equations

Euler’s method to solve y′ = f(y) subject to y(0) = y0 is to pick a small h > 0
and set ti = ih, and use the recurrence

yi+1 = yi + hf(yi)

for i = 0, 1, . . ., where yi is an approximation for y(ih).
One standard situation which makes this problematic is the equation y′ = ay

with a < 0. In this case y(t) = eaty0 which decays as t → ∞. It is still true that
for any T > 0, Euler’s method to approximate y(T ) converges to the true solution
as h→ 0, since y(T ) is approximated by yT/h (for simplicity we assume T/h is an
integer), and

yT/h = (1 + ah)T/h h→0−−−→ eaTy0.

However, until h is roughly −1/a (when a < 0), Euler’s method doesn’t look
qualitatively like the solution: namely, if h > −1/a, then (1+ah)i oscillates between
positive and negative, and if h > −2/a, then (1 + ah) < −1, and so |1 + ah| > 1,
so Euler’s method gives yi with

(1) |yi| = |1 + ah|i|y0|

which tends to infinity exponentially in i.
There are a number of remarks to make:
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(1) With Euler’s method applied to y′ = ay and a < 0, one has to tailor h to the
size of 1/|a| to get a numerical approximation that qualitatively resembles
the true solution. The equation y′ = ay is said to be “stiff” if a is a negative
number of “large” absolute value (hence “stiff” is not a precise term).

(2) Here is the real point: consider the system

(2) y′ = Ay, A = diag(d1, d2) =

[
d1 0
0 d2

]
=

[
−1000 0

0 1

]
(so d1 = −1000 and d2 = 1). For the initial condition y(0) = (1, 1), we
easily see that (see Section 3)

y(t) =
(
y1(t), y2(t)

)
= (ed1t, ed2t) = (e−1000t, et).

So y1(t) is insignificant for t = 1; however, if h ≥ 3/1000, then
|1 − h(−1000)| ≥ 2, and Euler’s method behaves disastrously because of
y1(t) (see (1)). By contrast, h = 3/1000 is a very reasonable step size to
solve y′2 = d2y2 = y2 and t = 1. Hence, although the y1(t) is negligible
for t = 1, and you may not “physically detect y1(t) in practice,” the mere
existence of y1 causes Euler’s method to fail.

(3) Similarly, in Section 3 we will explain that the same stiffness and can arise
in solving ODE’s y′ = Ay when A has a very large, negative eigenvalue
compared to the other eigenvalues. Hence the stiffness of an ODE may
not be as obvious as that for the example y′ = ay or y′ = Ay when A is
a diagonal matrix. A similar remark holds of y′ = f(y), where you have
to linearly approximate f(y) to detect stiffness. Hence if you are solving
y′ = f(y) where the function f is poorly understood, you may encounter
stiffness that is far less obvious than (2).

(4) Here is a remedy, at least for (2): the problem of “stiffness” can be (some-
times) be fixed by using a method such as backward Euler’s method:

(3) yi+1 = yi + hf(yi+1).

(we discuss this and other methods in Section 2). Note that (3) is implicit, in that it
requires us to solve for yi+1.1 Regardless, we can analyze backward Euler’s method
for y′ = ay: we have

yi+1 = yi + hayi+1,

so

yi+1 =
1

1− ha
yi.

Hence for a < 0, this iterative scheme has the right qualitative behaviour.
However, backward Euler has its limitations: if a > 0 and h > 2/a, then yi

oscillates in sign and is qualitatively different than the true solution.

1Presumably, for h sufficiently small we can write

yi+1 = yi + hf(yi+1) = yi + hf(yi + hf(yi+1))

and keep iterating on the rightmost yi+1; equivalently, setting

Ψ(y) = yi + hf(y),

on presumes that for small enough h, the sequence yi,Ψ(yi),Ψ
2(yi), . . . will converge to a solution

of y = Ψ(y), and this solution presumably is the yi+1 we seek.
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2. Forward and Backward Euler, and Higher Order ODE Numerical
Schemes

Backward Euler scheme is a first order accurate ODE approximation, just like
forward Euler. Let us review the computation (see also [A&G], page 488), and
make some brief remarks on other schemes.

2.1. Review of Forward Euler and Explicit Trapezoidal. If y = y(t) is suf-
ficiently differentiable, and t is fixed and h > 0 is small, Taylor’s theorem tells us
that

y(t+ h) = y(t) + hy′(t) +O(h2),

where the order h2 term, O(h2), actually equals h2

2 y
′′(ξ) for some ξ ∈ (t, t + h).

Hence the constant in O(h2) includes a second derivative bound.
Hence, for the ODE y′ = f(y), subject to y(0) = y0, we choose a small h, set

ti = ih for i = 0, 1, 2, . . ., and we have

(4) y
(
ti+1

)
= y(ti) + hf

(
y(ti)

)
+O(h2);

dropping the truncation term we use the recurrence

yi+1 = yi + hf(yi)

with yi being approximation of y(ti) = y(ih). This yields forward Euler’s method.
The fact that

(5) di
def
= y

(
ti+1

)
−
(
y(ti) + hf

(
y(ti)

))
= O(h2),

leads us to expect that the global error ei = y(ti) − yi will be roughly i times
O(h2). Hence for fixed T , with h > 0 small, we have ti = T for i = T/h (which—
for simplicity—we assume is an integer2, and expect y(T ) − yT/h to be T/h times

O(h2), or roughly O(Th).
In general, for any ODE approximation method we define di in (5) similarly, and

when di = O(h2)—or, equivalently, we drop a term of order O(h2) in the analog
of (4), we expect a global error of O(Th) in approximating y(T ) and we say the
method is accurate to first order. Similarly, if the local error di is O(hq), we call
the method accurate to (q − 1)-th order.

Similarly, a longer calculation with Taylor series shows that

y(t+ h) = y(t) + h

(
y(t) + Y (t)

2

)
+O(h3), where Y (t) = y(t) + hf(y(t)),

and dropping the O(h3) term (whose constant really involves third derivative
bounds) we get the explicit Trapezoidal rule, a second order method, namely

yi+1 = yi + h

(
f(yi) + f(Yi)

2

)
, where Yi = yi + hf(yi),

where di = O(h3), and is therefore accurate to second order : we expect the
(“global”) error in approximating y(T ) as yT/h to be (T/h)O(h3) = O(Th2).

A warning: to get evidence that Euler’s method has an O(Th) error in approxi-
mating y(T ), we tested them with the simple ODE y′ = ay, where we can explicitly
compute the exact solution and what Euler’s method yields. However, to prove
the global error is really O(Th) for a general ODE y′ = f(y) (or, more generally

2If T/h is not an integer, we could approximate y(T ) as an appropriate convex combination of

ybT/hc and ydT/he) and get similar results
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y′ = f(t,y)), [A&G], top of page 489, shows that one needs assumptions on f(y)
and y(t), and the O(Th) has some hidden constants based on these assumptions.
Fortunately, these hidden constants (mostly) show up in the ODE y′ = ay, which
is another selling point of these simple examples.

2.2. Backward Euler and Beyond. We can similarly see that

y(t+ h) = y(t) + hy′(t+ h) +O(h2),

which gives the backward Euler method

yi+1 = yi + hf(yi+1);

since we dropped an O(h2) term, backward Euler method is first order accurate.
Another implicit scheme is based on

y(t+ h) = y(t) + h

(
y′(t) + y′(t+ h)

2

)
+O(h3),

which gives us the second order method

yi+1 = yi + h

(
f(yi) + f(yi+1)

2

)
.

In Section 16.3, [A&G] refer to this method as the implicit Trapezoidal method.
[A&G] describe a number of other ODE approximation methods in Section 16.3,

which one can analyze similarly (although the Taylor series computations get pro-
gressively more difficult). One popular scheme is RK4, a classical, explicit Runga-
Kutta scheme of order 4, which is somewhat reminiscent of Simpson’s rule for
integration.

A fuller discussion of the above could easily be an entire course; e.g., see the text-
book Numerical Methods for Ordinary Differential Equations by John C. Butcher.
Here we see that ODE methods, including RK4, can be built using the theory of
directed graphs.

3. Stiffness in Eigenvalues

3.1. Stiffness in Diagonal Matrices. Say that A is the diagonal matrix

A = diag(d1, d2) =

[
d1 0
0 d2

]
.

Then the two-dimensional ODE y′ = Ay becomes[
y1
y2

]′
= y′ = Ay =

[
d1y1
d2y2

]
which is really two separate one-dimensional ODE’s

y′1 = d1y1, y′2 = d2y2.

So, for example, if d2 is of moderate size (either positive or negative or zero), and
d1 < 0 and |d1| is much greater than |d2|, then although the y1(t) term, proportional
to ed1t, decays much more quickly to 0 than y2(t) term, and the main behaviour of
y′ = Ay lies in y2(t), Euler’s method will have a large oscillating term when h is a
bit larger than 2/(−d1).

Hence the relatively insignificant y1(t) term can make Euler’s method disastrous,
even when h is small enough compared to 1/|d2|.
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Similarly remarks hold A is an n×n diagonal matrix diag(d1, . . . , dn). Note that
in the case the eigenvalues of A are d1, . . . , dn. (For this reason [A&G] sometimes
uses the more suggestive equation y′ = λy instead of y′ = ay or y′ = diy.3

3.2. Stiffness in (Similar and) Diagonalizable Matrices. The discussion
about y′ = Ay goes through almost the same for diagonalizable matrices; the
point is that if z′ = Bz is another ODE system, and A and B are similar ma-
trices, then the exact solutions of these two ODE systems and the numerical
approximation schemes for these two are essentially the same (up to similarity).

So say that A,S are n×n matrices with S invertible. Say that y = y(t) satisfies
y′ = Ay, and set z(t) = Sy(t), which is equivalent to y(t) = S−1z(t). Then we
easily see that

z′(t) =
(
Sy(t)

)′
= Sy′(t) = SAy(t) = SA

(
S−1z(t)),

and hence

z′ = Bz, where B = SAS−1.

We now show that Euler’s method applied to y′ = Ay with initial condition
y(0) = y0 is equivalent to Euler’s method applied to z′ = Bz with initial condition
z(0) = z0 where z0 = Sy0: indeed, if

yi+1 = (I + hA)yi

then setting zi = Syi for all i we have

zi+1 = Syi+1 = S(I + hA)yi = S(I + hA)S−1zi = (I + hB)zi

which is just Euler’s method for z.
It follows that if A is diagonalizable, i.e., for some invertible S we have B =

SAS−1 and B = diag(d1, . . . , dn) is a diagonal matrix, then Euler’s method applied
to A is equivalent to Euler’s method applied to B. Hence Euler’s method has similar
problems due to “stiffness” in the presence of “large negative” eigenvalues; while
these large negative eigenvalues give insignificant (or quickly decaying) terms to the
ODE y′ = Ay, these eigenvalues can ruin Euler’s method.

4. Stiffness in the Central Force Problems: Complex Eigenvalues
without Complex Eigenvalues

The equation y′ = Ay can have more subtle stiffness issues in systems that arise
when A has complex (non-real) eigenvalues. This arises in the central force prob-
lem in celestial mechanics. Here we discuss such examples without using complex
numbers.

The typical example is y′ = Ay, where

A =

[
0 −1
1 0

]
;

the eigenvalue equation for A, namely det(λI−A) = 0 gives λ2+1 = 0, and hence we
get λ = ±

√
−1, which are “complex numbers,” in fact “purely imaginary” complex

numbers. It is simplest to explain the issues here without any reference to complex
numbers. Let us switch to celestial mechanics notation, using ˙ for d/dt instead of
′.

3Also, [A&G] also use y(a) = c as their initial condition, rather than y(0) = y0.
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4.1. The Harmonic Oscillator. Consider an x : R → R satisfying ẍ = −x. We
have encountered this ODE before, and know that its general solution is x(t) =
C1 sin(x) + C2 cos(x); hence this ODE is usually called “the harmonic oscillator.”

Hence
d

dt

[
ẋ
x

]
=

[
0 −1
1 0

] [
ẋ
x

]
,

i.e.,

ẏ = Ay, where y =

[
ẋ
x

]
, A =

[
0 −1
1 0

]
.

Defining the “energy” of this system to be

Energy(t)
def
= (ẋ)2(t) + x2(t) = ‖y(t)‖2

(the L2-norm), we easily see that (d/dt)Energy(t) = 0 for all t, so the energy is
independent of time t. Of course, we can regard energy as a function of y = y(t),
in that Energy(t) = Energy(y(t)) = ‖y‖2 (which is independent of t).

Euler’s method starting at time t = 0 and with step size h therefore gives the
approximation

yi+1 = (I + hA)yi,

and hence
yi = (I + hA)iy0

where y0 = y(0) = (ẋ(0), x(0)), and where yi is an approximation to y(mh).
Note that for any z = (z1, z2) ∈ R2 and h ∈ R we have

(I + hA)

[
z1
z2

]
=

[
z1 − hz2
z2 + hz1

]
,

and hence

‖(I + hA)z‖2 = (z1 − hz2)2 + (z2 + hz1)2 = (1 + h2)(z21 + z22) = (1 + h2)‖z‖2.
It follows that for Euler’s method,

‖yi+1‖2 = (1 + h2)‖yi‖2,
and hence

‖yi‖2 = (1 + h2)i‖y0‖2.
In other words, after m iterations of Euler’s method, the approximation yi to y(ih)
has energy that is exactly (1 + h2)i of the original energy (which does not change
in the exact solution).

This is not really so bad (not yet...): say that we want to approximate y(T )
for some fixed T > 0; since yi approximates y(ih), we need i iterations of Euler’s
method with i = T/h (for simplicity assume this is an integer). Hence

Energy(yT/h) = (1 + h2)T/hEnergy(y0),

so the change in energy, for small h, is a factor of

(1 + h2)T/h =
(
eh

2+O(h4)
)T/h

= eTh+O(Th3).

So this is what you’d expect, given that Euler’s method is accurate to order one.
This means that for small δ > 0, if you can tolerate the energy increasing by a
factor of 1 + δ, then it suffices to have

Th+O(Th3) = log(1 + δ) = δ −O(δ2),
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or roughly Th ≈ δ, i.e.,

h ≈ δ/T.

4.2. The More Oscillatory Oscillator. Consider the second order ODE ẍ =
−c2x with c > 0. We have encountered this ODE before, and know that it’s
general solution is x(t) = C1 sin(cx) + C2 cos(cx), which is therefore periodic with
period 2π/c; the larger c, the shorter the period and the more quickly the solution
oscillates.

In this case we define the energy to be E(t) = (ẋ)2(t) + c2x2(t), and similarly
show that E(t) is constant.

We may similarly write this ODE as

ẏ = Ay, where y =

[
ẋ
cx

]
, A =

[
0 −c
c 0

]
.

Hence E(t) = ‖y(t)‖2. Show that after m steps of Euler’s method with step size
h applied to ẏ = Ay, the energy of the approximation increases by a factor of
(1 + c2h2)m.

Now matters are somewhat worse: if you want Euler’s method to approximate
y(T ) to have an increase in energy no more than a factor of 1 + δ, then (1) ch has
to be sufficiently small, and (2) in this case, you need(

1 + c2h2
)T/h ≤ 1 + δ,

so dropping smaller order terms we have roughly speaking

(T/h)c2h2 ≤ log(1 + δ),

and so you must take

h = δ/(Tc2).

Hence fixing T and δ, h must be proportional to 1/c2.
This may not be surprising, but this means that in systems with some less

significant but more rapidly oscillating structure, the rapid oscillations may cause
serious changes in energy if h is not tailored not only to δ, T , but also to c.

For another matter, if ch = ρ is some fixed number, then (1 + c2h2)i = (1 + ρ)i,
which means that after a fixed number of steps in i, the energy doubles. So h = ρ/c
makes Euler’s method disastrous after a fixed number of steps.

4.3. Trouble in the Central Force Problem. Consider the one-dimensional
central force problem: mẍ = −mu(|x|)x/|x|, or, more simply, ẍ = −u(|x|)x/|x|.
We can rewrite this is ẍ = −c(x)x, where c(x) = u(|x|)/|x|.

It follows that if t0 is fixed, for t near t0 we have that c(x(t)) is near c0 = c(x(t0)).
It follows that to have the energy not increase more than a factor of 1 + δ between
t0 and t0 + T , we need h = Tδ/c20.

Imagine we use Newton’s law u(r) = g/r2 where g is constant, and hence c(x) =
g/|x|3. When |x| is small, it follows that we need h = Tδ|x|6/g2 (for T small) to
avoid more than a factor of 1 + δ increase in numerical energy. This quantifies how
small h needs to be when |x(t)| becomes small. This should confirm our intuition
that if g (gravity) is increased, then the force is greater and we need a smaller step
size; similarly, as |x| deceases, we need a much smaller step size.

For similar reasons, in the central force problem mẍ = −mgx/‖x‖3, your step
size h may need to be roughly Tδ‖x‖6/g2, as a “ballpark” estimate.
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Note that since the exact energy in the central force problem mẍ =
−mu(‖x‖)x/‖x‖ is

1

2
m‖ẋ‖2 +mU(‖x‖)

where U ′(r) = u(r), i.e.,
∫
u(r) dr = U(r), when c(r) = u(r)/r is roughly constant

for r near r0, then u(r) is roughly cr and U(r) is roughly (1/2)(c2r2) for r near r0.
Hence the true energy is roughly m/2 times ‖y‖2 with y as in the previous sections.

Exercises

(1) One exercise.

(2) More exercises to follow.
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