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Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 303: use this material
at your own risk. . .

Acknowledgement: We wish to thank Will Evans for discussions and ideas for
course material.

The main goals of this article are to

(1) make some remarks on errors in finite precision computations;
(2) introduce some MATLAB statements;
(3) explain some properties of three-term recursion relations (which are a sim-

pler analog of second-order differential equations);
(4) use (1)–(3) above to test the finite precision of your MATLAB (or other)

software on your machine;
(5) make some remarks on differential equations and how (4) relates to stiff

differential equations.

Technicalities of finite precision are covered in much greater detail in Chapter 2
of the course textbook [A&G] (by Ascher and Greif); in CPSC 303 this year, the
course begins by covering this article instead. Some finite precision issues will arise
later in CPSC 303, but these issues tend to be specific to each application and less
dependent on the technicalities of Chapter 2.

1. Basic Facts About Finite Precision

Here are the basic facts about finite precision that will suffice for our current
needs in CPSC 303.

(1) Double precision, which is the MATLAB default, is a 64-bit representation
of a floating piont numbers (using base 2 scientific notation), which gives
you roughly 16 decimal digits of precision (with numbers in the range of
roughly ±10±300); single precision, a 32-bit representation, gives roughly 7
decimal digits.

(2) On some modern devices, such as a calculator, you can’t be sure how num-
bers are respresented and how much precision you have in any calculation;
this includes how floating point numbers are stored, but also operations
such as +, /, dividing by zero (which should give some sort of error mes-
sage), rounding, trig functions like sine and cosine, etc.

(3) Most modern computers follow some form of IEEE 754 Standard for
floating-point computations single and double precision (and some others
in bases 2 and 10). The original version was published in 1985, and revised
in 2008 and 2019.

(4) There are a number of good reasons to have all computers follow some
specific standard.

In class we might mention some real-world problems arising from floating point
imprecision; we may also mention some early Intel Pentium chips that produced
errors (although fairly rarely) after the 5th or 6th significant digit.

2. Cancellations

Of course, in any finite precision computation, errors can accumulate over a
large computation (e.g., solving a differential equation over a large time interval).
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However, the most dramatic errors occur in computations involving “cancellations,”
such as

(2100 + 1)− 2100

which in floating point arithmetic is probably 0 unless you are working with more
than 100 bits of precision (or, similarly, (102 + 1) − 102 if you are working with
2 decimal digits of precision). No one willingly introduces such cancellations into
their algorithms. In practice these cancellations can arise, although it tends to
depend on the particular situation.

For the rest of this article, we will give some examples. We briefly describe a toy
example.

Example 2.1. A (mostly) toy example arises in the quadratic equation ax2 + bx+
c = 0, or equivalently c(1/x)2 + b(1/x) + a = 0, whose two solutions are given by

−b±
√
b2 − 4ac

2a
=

2c

−b∓
√
b2 − 4ac

.

If ac is “much smaller” than b2, and b > 0, then the + solution on the left-hand-
side can have cancellation problems; in this case the corresponding right-hand-side
solution (with the −) remedies the problem.

Most problems with finite precision are not as simple to identify and fix.

3. Some Two- and Three-Term Recurrence Relations

In this section we will discuss sequences of real numbers

{xn}n∈Z = {. . . , x−1, x0, x1, x2, . . .}
that satisfy a (constant coefficient) three-term recurrence relation. We will uncover
some numerical issues of working which such equations that arise in numerically
solving differential equations (Chapter 16 of [A&G]).

3.1. Two-Term Recurrence Relations. Two-term recurrence relations are
much simpler than three-term recrrrences. Two-term recurrences illustrate some of
the principles of recurrence relations, although they are deceptively.

Consider the recurrence relation

(1) xn+1 = 3xn ∀n ∈ Z

with the additional constraint that x0 = 10. The equation above implies that

x1 = 3x0 = 30, x2 = 3x1 = 90, x3 = 3x2 = 270;

continuing in this fashion, we have

xm = 3m10 ∀m ≥ 4.

The recurrence (1) can also be used to determine x−1, x−2, . . . by writing

xn+1 = 3xn ⇐⇒ xn+1 − 3xn = 0 ⇐⇒ xn = xn+1/3,

and hence

x−1 = x0/3 = (1/3)10, x−2 = x−1/3 = (1/9)10, x−3 = (1/27)10, . . .

Hence we conclude that (1) and the “initial condition” x0 = 10 implies that

xm = 3m10 ∀m ∈ Z.
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Conversely, we see that the sequence xm = 3m10 satisfies (1) and the initial condi-
tion x0 = 10.

By the same principle, we see that a sequence {xn} satisfies (1) iff xn = 3nx0

for all n.
In the above, the condition x0 = 10 is called an “initial condition” because we

think xn representing the value of some “system” at time n; hence x0 is the value
of the system at time 0, x1 the value at time 1, etc.

Notice that if we specify that x5 = 23 in (1), then this condition also determines
xn uniquely as xn = 3n−523. Similarly specifying any particular value of xn gives
rise to a unique sequence {xn} satisfying (1).

More generally, if r ∈ R is any fixed real number, then the recurrence equation

xn+1 = rxn ∀n ∈ Z

holds iff xn = rnx0 for all n ∈ Z, and specifying any initial condition determines
xn uniquely.

The recurrence equations in this section are related to the differential equation
for a function x = x(t) (thinking of t as representing time),

dx

dt
= Cx,

whose unique solution is x(t) = eCtx(0) (differential equations will be discussed
in more detail when we get to Chapter 16 of [A&G]). Writing r = eC , we have
x(t) = rtx(0), which ressembles the solution to our two-term recurrence relations.
However, x = x(t) is defined for all t ∈ R, whereas in recurrence relations x = xn
is defined only for n ∈ Z.

3.2. A Simple Three-Term Recurrence Relation. Consider the three-term
recurrence relation

(2) xn+2 − 5xn+1 + 6xn = 0 ∀n ∈ Z.

If we specify (the “initial conditions”) x0 = 4 and x1 = 7, we can write the recur-
rence as

xn+2 = 5xn+1 − 6xn

to determine x2, x3, x4, . . .
Let’s use MATLAB code to determine the first few values; unfortunately MAT-

LAB insists on positive integer indices, so the code below will take x1 = 4 and
x2 = 7 instead:

clear

x{1} = 4

x{2} = 7

for i=3:20,

i

x{i}=5*x{i-1}-6*x{i-2},

end

[You may have to cut and paste this code line-by-line if your cutting and pasting
method ignores spaces and new lines.] The output should give you the sequence
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(MATLAB will call this a “cell array”)

4, 7, 11, 13,−1,−83,−409,−1547,−5281, . . . ,−386109769, -1.1596e+09

Can you guess what is the formula for xn?

You can also determine x−1, x−2, . . . by writing the above recurrence as

xn =
−xn+2 + 5xn+1

6
.

% Note that the symbol % is used for comments in MATLAB

% Note that a semicolon (;) suppresses the output

%

clear % this command clears all the variables

x{1} = 7; x{2} = 4 ;

for i=3:20,

x{i}=( -x{i-2} + 5 * x{i-1} )/6 ;

end

x % this line prints out x

which gives the sequence

1.9071e-05, . . . , 0.5880, 1.1389, 2.1667, 4, 7

Combining the sequences gives the numerical results

. . . , x−2 = 1.1389, x−1 = 2.1667, x0 = 4, x1 = 7, x2 = 11, x3 = 13, x4 = −1, . . .

Next we derive a formula for xn.

Try to guess (or determine without guessing) a formula for xn before
turning the page.
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Did you really try?
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3.3. Solution of (2). There are many solutions to (2). First let us determine some
“special solutions:” let us see if there are any nonzero r ∈ R such that xn = rn,
i.e.,

. . . , x−2 = r−2, x−1 = r−1, x0 = 1, x1 = r, x2 = r2, . . .

is a solution to (2). This amounts to the equation

rn+2 − 5rn+1 + 6rn = 0

for all n, which (since we are looking for r 6= 0) amounts to

r2 − 5r + 6 = 0

and hence r = 2, 3. It follows that

(1) xn = 2n is a solution to (2);
(2) xn = 3n is a solution to (2);
(3) as a result (by the “linearity” of (2)) for any C1, C2 ∈ R,

(3) xn = C12n + C23n

satisfies (2).

[It turns out that this formula for xn represents all possible solutions to (2),
although we do not need this result here.]

Now let us find C1, C2 in (3) for which x0 = 4 and x1 = 7, which amounts to

x0 = 4 = C1 + C2, x1 = 7 = C12 + C23,

which gives C2 = −1 and C1 = 5. It follows that

xn = (5)2n + (−1)3n

satisfies both (2) and x0 = 4 and x1 = 7. This formula also shows that for n→ +∞,
xn is roughly (−1)3n, and for n→ −∞, xn is roughly (5)2n; i.e., the (−1)3n term
dominates for n tending to positive infinity, and the (5)2n dominates for n tending
to negative infinity.

3.4. Fibonacci Recurrence. The Fibonacci numbers

. . . , F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, . . .

satisfy the recurrence equation

(4) xn+2 = xn+1 + xn ∀n ∈ Z

(in the case where xn = Fn). The following are not hard to see:

(1) If x0, x1 are given, then (4) determines x2, x3, . . . and also x−1, x−2, . . .
(2) The Fibonacci numbers are determined by (4) and the (“initial”) conditions

x0 = 0 and x1 = 1 (or, equivalently, x1 = 1 and x2 = 1).
(3) It is not hard to show that a sequence {xn} satisfies (4) iff xn is given by

a formula

(5) xn = C1

(
1 +
√

5

2

)n

+ C2

(
1−
√

5

2

)n

for constants C1, C2.
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(4) The above numbers (1 ±
√

5)/2, called the golden ratio (1 +
√

5)/2 =

1.6180339 . . . and the conjugate of the golden ratio (1 −
√

5)/2 =
−0.6180339 . . ., arise from looking for a solution xn = rn to (4) (as in
the previous subsection), which leads to equation

r2 − r − 1 = 0, hence r =
1±
√

5

2
.

(5) The Fibonacci numbers are given by the formula

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

,

which is (5) in the special case C1 = 1/
√

5, C2 = −1/
√

5.

3.5. Some Other Three-Term Recurrence Relations. We will be interested
in the following three-term (constant coefficient) recurrence relations: we will take
two distinct real numbers, r1, r2, and consider the relation

(6) xn+2 = (r1 + r2)xn+1 − (r1r2)xn.

The Fibonacci recurrence relation (4) is the special case where

r1, r2 =
1±
√

5

2
.

Like the Fibonacci recurrence relation, we can see that for any constants r1 6= r2,
the general solution to be above recurrence relation is of the form

(7) xn = C1r
n
1 + C2r

n
2

for constants C1, C2. In particular, for C1 = 1 and C2 = 0 we have that xn = rn1 is
one solution to the recurrence relation, and similarly xn = rn2 is another.

Example 3.1. Let r1 = 1 and r2 = 1/2. We get the recurrence relation

(8) xn+2 = (3/2)xn+1 − (1/2)xn.

We see that

(1) if x0 = 1 and x1 = 1/2, then we have xn = (1/2)n for all n ∈ Z;
(2) similarly if x0 = 1 and x1 = 1, then we have xn = 1 for all n ∈ Z;
(3) more generally, the general solution to (8) is

xn = C1 + C2(1/2)n.

Example 3.2. Let r1 = 1 and r2 = 1/3. We get the recurrence relation

xn+2 = (4/3)xn+1 − (1/3)xn.

The general solution is

xn = C1 + C2(1/3)n.

In what follows we will also use examples like r1 = 1 and r2 = 1/4, 1/5, 1/10;
these all follow a similar pattern as the above examples.
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3.6. Matrix Form of a Three-Term (Constant Coefficient) Recurrence.
The Fibonacci recurrence xn+2 = xn+1 + xn can be written in “matrix form”[

xn+2

xn+1

]
= A

[
xn+1

xn

]
, where A =

[
1 1
1 0

]
.

From this vector/matrix formula, it follows that[
xn+1

xn

]
= A

[
xn
xn−1

]
= A2

[
xn−1

xn−2

]
= . . . = An

[
x1

x0

]
.

In particular, the Fibonacci numbers satisfy[
Fn+1

Fn

]
= An

[
F1

F0

]
= An

[
1
0

]
This formula can be used to compute the Fibonacci numbers (see Section ??).

Similarly, any of the three-term relations can be written in matrix form; for
example xn+2 = 5xn+1 − 6xn is can be written as[

xn+2

xn+1

]
= A

[
xn+1

xn

]
, where A =

[
5 −6
1 0

]
.

One can also solve recurrences by diagonalizing the above matirx A (see
Appedix B).

3.7. More General Recurrence Relations. One generalization of the two- and
three-term recurrence relations we have discussed so far is a relation

xn+k + a1xn+k−1 + · · ·+ ak−1xn+1 + akxn = 0, ∀n ∈ Z

where a1, . . . , ak are fixed real or complex numbers. See Appendix A for some
remarks these recurrences. Their general solution can be found by solving the
equation

rk + a1r
k−1 + · · ·+ ak−1r + ak = 0.

The only new phenomenon that he haven’t described is what happens when the
above equation has repeated roots (e.g., r2 − 2r + 1 = 0, corresponding to the
recurrence xn+2 = 2xn+1 − xn).

The above recurrences can be written in matrix form involving a k× k (square)
matrix analogous to the 2 × 2 matrix form for three-term (constant coefficient)
recurrences.

Another generalization of the three-term recurrence relations we have discussed
is the relation

(9) xn+2 = f(n)xn+1 + g(n)xn

where f, g are functions Z→ R (or Z→ C, where C denotes the complex numbers).
This equation is still linear, in that if yn and zn are two particular solutions to this
equation, then so is C1yn + C2zn for any constants C1, C2. A typical second-
order ODE (ordinary differential equation) is more closely analogous to this type
of equation; however, a lot of properties of (and problems arising in) numerical
methods can be understood by looking at the recurrences (or ODE’s) where f, g
are constants independent of n.

We call a linear recurrence relations (9) a linear recurrence with varying coeffi-
cients; we will return to them when we study ODE’s in Chapter 16 of [A&G].
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4. MATLAB code for the Fibonacci Recurrence

The following MATLAB code will print out the first few Fibonacci numbers:

clear

Fib{1}=1

Fib{2}=1

for i=3:20, i, Fib{i}=Fib{i-1}+Fib{i-2}, end

It is a bit nicer to suppress the printout of the (cell array) Fib until the last step.

clear

Fib{1}=1

Fib{2}=1

for i=3:20, Fib{i}=Fib{i-1}+Fib{i-2}; end

Fib

To test how large floating point numbers can be, just print out more Fibonacci
numbers:

clear

Fib{1}=1

Fib{2}=1

for i=3:1500, Fib{i}=Fib{i-1}+Fib{i-2}; end

Fib

Here is MATLAB code for a sequence satisfying the Fibonacci recurrence but
with different x1, x2:

clear

x{1}=3

x{2}=7

for i=3:20, x{i}=x{i-1}+x{i-2}; end

x

By taking different values for x{1}, x{2} we get different sequences.
The following demonstrates the affects of rounding. If x1 = 1 and x2 = r where

r =
1±
√

5

2
= 1.618033 . . . , −0.618033 . . .
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then x3 = r2, x4 = r3, etc. Taking the negative value of r, we can generate the
sequence xn numerically as follows:

clear

x{1}=1

x{2}=(1-sqrt(5))/2

for i=3:20, x{i}=x{i-1}+x{i-2}; end

x

However, if we generate more values of xn, numerically things go awry:

clear

x{1}=1

x{2}=(1-sqrt(5))/2

for i=3:120, x{i}=x{i-1}+x{i-2}; end

x

In the next section we study this phenomenon by using simpler 3-term recur-
rences.

4.1. The Matrix Form of the Fibonacci Recurrence. Another way to write
(4) is in the matrix form[

xn+2

xn+1

]
= A

[
xn+1

xn

]
, where A =

[
1 1
1 0

]
.

For given x0, x1, we have [
xn+1

xn

]
= An

[
x1

x0

]
.

We can also derive (5) by diagonalizing the matrix A.
MATLAB was designed with matrix operations in mind. Here is some code that

uses the matrix A and its powers.

% Any statement beginning with a % is a comment

clear

A = [1, 1; 1, 0]

u = [ 1 ; 1 ]

for i = 1:15, i, u = A * u , end

Here is the problematic case of x0 = 1 and x1 = (1−
√

5)/2.

clear

A = [1, 1; 1, 0]
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u = [ (1-sqrt(5))/2 ; 1 ]

% for i = a:b:c iterates i from a to c by steps of size b

for i = 5:5:120, i, u = A^5 * u , end

5. MATLAB Experiments on the Nature of Double Precision

We will now give some MATLAB experiments that give some insight into double
precision arithmetic; for example, our experiments should convince you that double
precision is implemented in scientific notation in base 2 (rather than in base 10).
These experiments also show the problems in finite precision when solving recursive
relations; these relations will also arise in solving differential equations.

5.1. Some Recursive Relations with Constant Solutions. According to Sub-
section 3.5, for any nonzero real r ∈ R, by taking r1 = 1 and r2 = r in (6) and (7),
we see that the recurrence equation

xn+2 = (1 + r)xn+1 − r xn
has a general solution

xn = C1 + C2r
n.

In particular, if we set x0 = 1 and x1 = r, and use the above recurrence to
compute xn, then the exact solution to the above recurrence is xn = rn (which is
the case C1 = 0 and C2 = 1 above). Hence the calculation

x0 = 1, x1 = r, x2 = (1+r)x1−rx0, x3 = (1+r)x2−rx1, x4 = (1+r)x3−rx2, . . .

yields (in exact arithmetic) the sequence

x0 = 1, x1 = r, x2 = r2, x3 = r3, . . .

Hence if |r| < 1 then we have xn → 0 as n→∞.
However, we (meaning you) will make MATLAB experiments on the homework

to see that if |r| < 1, then the roundoff error can give you a very different result
once xn is less than 10−18 or so; however, when r = 1/2 or r = 1/4, the numerical
result will agree until xn reaches 10−324 or so, because only division by powers of
2 are involved in the recurrence, and things go wrong only when you reach xn that
are close to the smallest nonzero real in double precision.

[Some more details will be given on the homework and/or the exercises at the
end of this article.]

5.2. The Case r = 1/3. The case r = 1/3 gives the recurrence relation xn =
(4/3)xn−1 − (1/3)xn−2, whose general solution is

xn = C1 + C2(1/3)n

where C1, C2 ∈ R are fixed real numbers. In particular, C1 = 0 and C2 = 1,
corresponds to xn = (1/3)n. however, we claim that if you set x0 = 1, x1 = 1/3,
and

xn = (4/3)xn−1 − (1/3)xn−2 for n ≥ 2,

then in exact arithmetic you get x2 = 1/9, x3 = 1/27, etc. However, we claim
that in MATLAB there will be roundoff error, due to the division by 3, and as
n→∞ you get xn tends to -1.7385e-18. This means—roughly speaking—that the
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numerical solution ressembles the solution where C1 is a tiny negative number (and
whatever C2 is, the C1 term is much larger that C2(1/3)n). The actual truth is
more complicated, becuase when you transition from a dominant C2(1/3)n term to
a dominant C1 term, the transition is a bit more complicated.

5.3. The Case r = 1/2. By contrast, the case r = 1/2 gives the recurrence xn =
(3/2)xn−1 − (1/2)xn−2, whose general solution is

xn = C1 + C2(1/2)n;

however, setting x0 = 1 and x1 = 1/2, and using the recurrence to compute xi for
i = 2, 3, . . ., the divisions by 2 are computed essentially exactly (because double
precision works in base 2). However, at i around 1075, when you reach the smallest
possible value of double precision, the xi’s begin to cycle in a curious way. (What
happens and why?)

[Some MATLAB code for this will be given in the exercises at the end of this
article and/or the homework assignments.]

5.4. MATLAB Experiment for r = 1/2. This code has division by 2; but since
double precision works in base 2, the result sequence 1, 1/2, 1/4, 1/8, . . . is computed
exactly.

clear

x{1} = 1;

x{2} = 1/2;

for i=3:100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x

If we iterate the recurrence enough times, we obtain xn that are as small as roughly
4.94× 10−324, around the 1075-th term, but then something weird happens.

% continuing from above... (The % is used for commenting in MATLAB)

%

for i=3:1100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x

[Exercise: explain this weird cycling.]

5.5. MATLAB Experiment for r = 1/3, 1/5, 1/10. This code has division by 3;
since double precision works in base 2, the result sequence 1, 1/3, 1/9, 1/27, . . . is
not computed exactly, and the resulting output looks more like

C1 + (1/3)nC2

where C1 is (close to) but not exactly zero

clear

x{1} = 1;

x{2} = 1/3;

for i=3:100, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

x

In this case xn seems to converge to roughly -1.7385e-18.
This code has division by 5 in its recurrence equation.

clear

x{1} = 1;

x{2} = 1/5;
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for i=3:100, x{i} = (6/5)*x{i-1}-(1/5)*x{i-2}; end

x

In this case xn seems to converge to roughly -4.0416e-17.
This code has division by 10 in its recurrence equation.

clear

x{1} = 1;

x{2} = 1/10;

for i=3:100, x{i} = (11/10)*x{i-1}-(1/10)*x{i-2}; end

x

In this case xn seems to converge to roughly 9.8263e-18.

5.6. Similar MATLAB Experiments in Matrix Form. We may write xn+2 =
(1 + r)xn+1 − rxn in “matrix form”[

xn+2

xn+1

]
= A

[
xn+1

xn

]
, where A =

[
1 + r −r

1 0

]
.

For given x0, x1, we have [
xn+1

xn

]
= An

[
x1

x0

]
.

Hence the case x0 = 1, x1 = 1 corresponds to the matrix power[
1 + r −r

1 0

]n [
r
1

]
.

Here is some matrix code that is likely produces similar results as the previous
MATLAB code.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 2

A = [ 3/2, -1/2 ; 1, 0 ]

u = [ 1/2; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 3

A = [ 4/3, -1/3 ; 1, 0 ]

u = [ 1/3; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 4

A = [ 5/4, -1/4 ; 1, 0 ]

u = [ 1/4; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 10

A = [ 11/10, -1/10 ; 1, 0 ]

u = [ 1/10; 1 ]

for i = 10:10:150, i, u = A^10 * u , end
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6. The Fibonacci Lecture

One way to begin any course on (any kind of) algorithms is to give the venera-
ble “Fibonacci lecture,” meaning that the entire lecture is devoted to given many
algorithms related to computing the n-th Fibonacci lecture.

As an example, one can discuss the formula[
Fn+1

Fn

]
= An

[
F1

F0

]
= An

[
1
0

]
and mention how one might exploit repeated squaring and Strassen’s method to
speed things up.

When I was a student, Prof. John Reif gave such a lecture (in 1983 or so); I believe
the tradition goes back some years (or decades) before this (in the prehistory of the
internet. . .), and I do not know its history. I would be curious to know.

7. Conceptual Examples From ODE’s and PDE’s

Some real-world examples of cancellation are easy to understand when you the
properties of the solution of the equations; often you don’t even have to understand
much about the particular ODE or PDE.

(1) If two bodies collide in the “n-body problem” under Newton’s law, then
their differential equation(s) become “singular” at the collision (i.e., their
distance becomes zero, the potential enery of the system becomes infinite,
and therefore so does their kenetic energy, some of their speeds, etc.). In
this case the equations themselves break down.

(2) Similarly, if two bodies nearly collide, then the corresponding equations are
close to a “singularity” and numerical methods require care (for various
reasons, including cancellation problems).

(3) If the solution to an equation (e.g., the classical heat or wave equation)
depends significantly on data that your discrete approximation does not
use, then this is clearly problematic; what may not be clear at this point
is that this can happen if you are not careful... Often such discretizations
scheme produces “garbage;” at times this can be viewed as a cancellation
problem in the discrete approximation, although there is really something
more fundamental that is wrong.

(4) If you are solving a differential equation whose general solution is of the
form f(t) = C1e

t + C2e
−t (here C1, C2 are constants and t is a variable),

then when exact initial conditions dictate that C1 = 0 and C2 = 1 you may
have problems with cancellation when t is large. (For small t there is little
difference between C1 = 0 and C1 = 10−20; for large t there is. . .) This is
analogous to the examples involving three-term recursive relations.

Other times discrete approximations to real-world problems have cancellation
problems—such as instabilities in high order Runga-Kutta schemes—for reasons
that are not apparent from the solutions of the equation itself (but that can be
understood by analyzing the discrete approximation). We will see some examples
in Chapters 16–18 of the course textbook.

[We also remark that (Newton’s law for celestial mechanics in) the 2-body prob-
lem violates relativity when two bodies get “very close,” since then their potential
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energy can become arbitrarily negative and therefore the kenetic energy arbitrar-
ily large. One such situation—the precession of the perihelion of Mercury—was
remarkably (corrected and) modeled by Einstein’s general relativity.]

[Similarly the classical heat equation also violates relativity; however, the influ-
ence of one point in space over another of distance ∆x is roughly propertional to

e−C|∆x|2/(∆t) in time ∆t, for a moderate constant C. Hence relativity is violated,
but by an immeasurably small amount in typical applications.]

8. Exercises

[THIS IS A WORK IN PROGRESS. I WILL LIKELY EDIT THE MATERIAL
HERE AND ADD MORE MATERIAL.]

In CPSC 303 this term, we might assign some of the following problems as
homework. The upshot is that you can get strong evidence that MATLAB finite
precision is working in base 2 by running the code below.

8.1. Some MATLAB Experiments. SOME OF THIS MATLAB CODE AND
EXPERIMENTS CAN BE FOUND IN EARLIER SECTIONS.
This code has division by 2; but since double precision works in base 2, the result
sequence 1, 1/2, 1/4, 1/8, . . . is computed exactly.

clear

x{1} = 1;

x{2} = 1/2;

for i=3:100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x

If we iterate the recurrence enough times, we obtain xn that are as small as roughly
4.94× 10−324, around the 1075-th term, but then something weird happens.

% continuing from above... (The % is used for commenting in MATLAB)

%

for i=3:1100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x

[Exercise: explain this weird cycling.]
This code has division by 3; since double precision works in base 2, the result
sequence 1, 1/3, 1/9, 1/27, . . . is not computed exactly, and the resulting output
looks more like

C1 + (1/3)nC2

where C1 is (close to) but not exactly zero

clear

x{1} = 1;

x{2} = 1/3;

for i=3:100, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

x

In this case xn seems to converge to roughly -1.7385e-18.
This code has division by 5 in its recurrence equation.

clear

x{1} = 1;

x{2} = 1/5;

for i=3:100, x{i} = (6/5)*x{i-1}-(1/5)*x{i-2}; end
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x

In this case xn seems to converge to roughly -4.0416e-17.
This code has division by 10 in its recurrence equation.

clear

x{1} = 1;

x{2} = 1/10;

for i=3:100, x{i} = (11/10)*x{i-1}-(1/10)*x{i-2}; end

x

In this case xn seems to converge to roughly 9.8263e-18.
Here are some matrix computations that do similar things.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 2

A = [ 3/2, -1/2 ; 1, 0 ]

u = [ 1/2; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 3

A = [ 4/3, -1/3 ; 1, 0 ]

u = [ 1/3; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 4

A = [ 5/4, -1/4 ; 1, 0 ]

u = [ 1/4; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% division by 10

A = [ 11/10, -1/10 ; 1, 0 ]

u = [ 1/10; 1 ]

for i = 10:10:150, i, u = A^10 * u , end

8.2. Some Exercises. Possible exercises [THIS IS A WORK IN PROGRESS]

(1) (a) Show that if r = 1 or r = 1/2, then the sequence xn = rn (where n
ranges over Z, the integers) satisfies the recurrence equation

(10) xn = (3/2)xn−1 − (1/2)xn−2.

(b) Show that if xn satisfies (10), then for any C ∈ R, the sequence x′n =
Cxn also satisfies (10) (i.e., x′n = (3/2)x′n−1 − (1/2)x′n−2).

(c) Show that if x′n and x′′n are two sequences satisfies (10), then also
x′′′n = x′n + x′′n satisfies (10).

(d) Conclude that for any constants C1, C2 ∈ R, the sequence

xn = C1 + C2(1/2)n

satisfies (10).
(e) Etc.
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Appendix A. Linear Recurrence Relations with Constant
Coefficients

In this section we gather some facts about linear recurrence relations with con-
stant coefficients. These are analogous to an ODE with constant coefficients.

A linear recurrence relation is a relation

(11) xn+k + a1xn+k−1 + · · ·+ ak−1xn+1 + akxn = 0, ∀n ∈ Z

(i.e., for all integers n), where a1, . . . , ak are real or complex; for simplicity we
assume that ak 6= 0. a sequence

{xm}m∈Z = {. . . , x−1, x0, x1, x2, . . .}
satisfies the above relation if this equation holds for all n ∈ Z.

Example A.1. The Fibonacci numbers sastisfy the recurrence relation

xn+2 − xn+1 − xn = 0.

Notice that the solution to the equation z2 − z − 1 = 0 has two roots, r1, r2, given
by

1±
√

5

2
,

and that if r is one of those roots, then the sequence xn = rn satisfies the above
recurrence. It is known that a sequence {xn} is a solution of the above recurrence
iff it is of the form

xn = C1r
n
1 + C2r

n
2

for some fixed constants C1, C2.

There is a standard way to describe all solutions of (11): namely, set

p(r) = rk + a1r
k−1 + · · ·+ ak,

and let the (complex) roots of p be r1, . . . , rs, so that

p(r) = (r − r1)m1 . . . (r − rs)ms

for some positive integers m1, . . . ,ms (we are using the fundamental theorem of
algebra). Then xn satisfies (11) iff

xn = q1(n)rn1 + · · ·+ qs(n)rns

where each qj is a polynomial of degree at most mj − 1.

Example A.2. Let r1, r2 be distinct and nonzero (either real or complex numbers).
Then since

(z − r1)(z − r2) = z2 − (r1 + r2)z + (r1r2),

we have that solutions to the recurrence equation

xn+2 − (r1 + r2)xn+1 + (r1r2)xn = 0,

or, equivalently

xn+2 = (r1 + r2)xn+1 − (r1r2)xn

are given by all sequences {xn} of the form

xn = C1r
n
1 + C2r

n
2

for constants C1, C2.
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Example A.3. Taking r1 = 1 and r2 = 1/3 in the above example shows that the
recurrence

xn+2 = (4/3)xn+1 − (1/3)xn

(for all n ∈ Z) is satisfied iff for some constants C1, C2 we have

xn = C11n + C2(1/3)n = C1 + C2(1/3)n.

Example A.4. Consider the recurrence relation

xn+2 = 2xn+1 − xn, i.e., xn+2 − 2xn+1 + xn = 0.

The corresponding polynomial is p(z) = z2− 2z+ 1 = (z− 1)2, whose roots are 1, 1
(i.e., 1 with multiplicity 2). The general solution of this equation is

xn = C1 + C2n

where C1, C2 are constants, or equivalently xn = q(n) where q is a polynomial of
degree at most 1. Similarly the general solution to the recurrence relation

xn+3 − 3xn+2 + 3xn+1 − xn = 0

is
xn = C1 + C2n+ C3n

2,

and the general solution to the recurrence relation

xn+4 − 4xn+3 + 6xn+2 − 4xn+1 + xn = 0

is
xn = C1 + C2n+ C3n

2 + C4n
3.

These recurrences can be useful in many topics covered in CPSC 303.

[It is sometime useful to interpret the above recurrence using the “shift operator,”
meaning that we view the above relation as saying that p(σ)xn−k = 0 for all n,
where σ is the (upward) shift operator given by σxm = xm+1; this is equivalent to
requiring that p(σ)xn = 0 for all n ∈ Z.]

Appendix B. Diagonalization

One can solve the three-term (constant coefficient) recurrences in this article by
writing them in matrix form and diagonalizing the matrix. In this appendix we
review the ideas.

It is easy to take the power of a diagonal matrix: for example if

D =

[
2 0
0 3

]
then we easily see that for any n = 1, 2, 3, . . .

Dn =

[
2n 0
0 3n

]
.

It follows that if A is a matrix that can be written as MDM−1 for some invertible
matrix, M , then

A2 = (MDM−1)(MDM−1) = MDM−1MDM−1 = MD2M−1 = M

[
22 0
0 32

]
M−1

and similarly

An = M

[
2n 0
0 3n

]
M−1.
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Now consider the first three-term recurrence we considered:[
xn+1

xn

]
= An

[
x1

x0

]
, where A =

[
5 −6
1 0

]
.

Computing the eigenvectors and eigenvalues of A see that A has eigenvalues 2, 3,
with eigenvectors (which are unique up to scalar multiple) given by

A

[
2
1

]
= 2

[
2
1

]
, A

[
3
1

]
= 3

[
3
1

]
.

(It is no coincidence that the eigenvector corresponding to r = 2, 3 is [r 1]T .) [We
may review some of this linear algebra, or we may use it as a black box and/or
assign some homework on this.] Hene we have

A = M

[
2 0
0 3

]
M−1, where M =

[
2 1
3 1

]
.

And therefore [
xn+1

xn

]
= An

[
x1

x0

]
= M

[
2n 0
0 3n

]
M−1

[
x1

x0

]
from which we can derive an expression for xn in terms of x1, x0. In more detail

M

[
2n 0
0 3n

]
M−1

[
x1

x0

]
=

([
2 3
1 1

] [
2n 0
0 3n

])[
2 3
1 1

]−1 [
x1

x0

]

=

[
2 · 2n 3 · 3n

2n 3n

]
1

2 · 1− 3 · 1

[
1 −3
−1 2

] [
x1

x0

]
=

[
2 · 2n 3 · 3n

2n 3n

]
(−1)

[
x1 − 3x0

−x1 + 2x0

]

=

[
whatever

−2n(x1 − 3x0)− 3n(−x1 + 2x0)

]
=

[
xn+1

xn

]
and so

xn = −2n(x1 − 3x0)− 3n(−x1 + 2x0).

Note that the term [
2 3
1 1

]−1 [
x1

x0

]
appearing above is equivalent to solving the equation[

x1

x0

]
= C1

[
2
1

]
+ C2

[
3
1

]
.

Note also that the term that we called “whatever” is just the expression for xn with
n replaced by n+ 1, in view of the fact that[

2 · 2n 3 · 3n
2n 3n

]
=

[
2n+1 3n+1

2n 3n

]
.



CPSC 303: RECURRENCE RELATIONS AND FINITE PRECISION 21

B.1. Non-Diagonalizable Matrices and Multiple Eigenvalues/Roots. We
remark that not all matrices are diagonalizable, even those occurring in recurrence
relations. For example, the recurrence

xn+2 − 2xn+1 + xn = 0

whose general solution is

xn = C1 + C2n

can be written as [
xn+2

xn+1

]
= A

[
xn+1

xn

]
, where A =

[
2 −1
1 0

]
.

The matrix A has eigenvalues 1, 1, i.e., the only eigenvalue is 1 but it has multiplicity
two. The is also the case for the root r = 1 corresponding polynomial equation

r2 − 2r + 1 = 0.

However, any matrix, including the above matrix A, can be written as MJM−1

where J is a block Jordan matrix (which is Jordan canonical form of A), roughly
meaning that it close to a diagonal matrix. In this case

A = MJM−1

for an invertible matrix M and the matrix

J =

[
1 1
0 1

]
.

In this case Jn still has simple formula:

J = I +N, where I =

[
1 0
0 1

]
, N =

[
0 1
0 0

]
.

Since I is the identity and N2 = 0 (so N is nilpotent), we have

Jn = (I +N)n = In + nN +

(
n

2

)
N2 + · · · = In + nN =

[
1 n
0 1

]
.

Appendix C. The Shift Operator

In this section we make some remarks on the shift operator. This operator is
useful in a number of areas of study, including interpolation and differential equa-
tions (which we will study in CPSC 303); the shift operator part of the foundations
of some areas of study, such as symbolic dynamics and time series.

If {xn}n∈Z is a two-sided infinite sequence of real numbers (or complex numbers,
or rational numbers, etc.) indexed on n varying over the integers, Z (or over the
positive integers, or over the non-negative integers, etc.), the shift operator, σ, is
naively defined by the formula

σxn = xn+1;

it is worth thinking about what this means precisely.
Usually one thinks of x = {xn}n∈Z as a sequence, and σx as the new sequence

whose n-th term is xn+1. Hence σ is a map from sequences to sequences; one easily
verifies that it is a linear operator, meaning that if x and y are two sequences and
C1, C2 are constants, then

σ(C1x + C2y) = C1x + C2y.
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We often writes x = {xn}n∈Z instead of x = {xn}n∈Z when confusion is unlikely to
occur. We oftem write (σx)n instead of σxn when we want to emphasize that σ is
an operator, although σxn is less cumbersome to write.

The operator σ has a large number of important properties. Here are some.

(1) σ2xn = xn+2, and for any integer k ≥ 3, σkxn = xn+k;
(2) σ has an inverse (on sequences indexed over Z), σ−1xn = xn−1;
(3) for any polynomial, p(z), one can define the operator p(σ);
(4) we can write the recurrence

xn+2 − 5xn+1 + 6xn = 0

as
(σ2 − 5σ + 6)xn = 0,

where the 6 really refers to the identity operator (which equals σ0);
(5) etc. etc. etc.
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