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This article has been revised from the 2020 version; it more closely
follows the 2024 class discussion of divided differences.

The goal of this note is to fill in some details and give further examples regarding
the Newton polynomial, also called Newton’s divided difference interpolation poly-
nomial, used in Sections 10.4-10.7 of the course textbook [A&G] by Ascher and
Greif.

The most important (and remarkable) formula is that for n + 1 distinct reals,

X0, .., Tn, the unique polynomial p(z) of degree at most n such that p(x;) = f(x;)
fori=0,...,nis
(1) p(x) = flzo] + (z — z0) flzo, 21] + (2 — wo)(x — 21) flwo, 1, 22

+oF (@ —x)...(x — xp_1)flTo, 21, ..., Tn],
where flxo, ..., z;] is the Newton divided difference (which is a real depending only
on f and zo,...,2;) and if f is n times differentiable, then

f[l‘o,.]?l, . ,l‘n] = f(n)(f)/nl

for some & contained on the smallest interval containing all the z;. Furthermore,
the Newton divided difference has many remarkable properties, such as one can
define f[zo,...,x,] even when x,...,x, are not distinct, when f is sufficiently
differentiable. The case where zog = ... = x,,_1 are fixed and = = x,, is a variable
gives Taylor’s theorem! as a special case.

1. NEWTON’S POLYNOMIAL IN INTERPOLATION

[A&G] introduce divided differences in Section 10.4 with the following motiva-
tion: say that you know the unique polynomial p,,_1(z), of degree at most n — 1,
that interpolates the n data points (xo,¥o),- -, (®n—-1,Yn—1). Now imagine that
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1 T understand that this is how Taylor derived his theorem; see https://hsm.stackexchange.
com/questions/5569/taylors-theorem-and-newtons-method-of-divided-differences and
https://books.google.ca/books?id=r-Gq9YyZYXYC&pg=PA21.
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you are given one additional data point, (., y.), and you seek the unique polyno-
mial of degree at most n, p,(x), that interpolates this new data point, as well as
the previous ones. Then we easily see that there is a unique real ¢,, for which

(2) pn(‘r) :pn—l(aj)+Cn(x*x0)"'(‘r7xn—l);

however there are two notable proofs: (1) a direct argument, noting that p,, (x;) = y;
for all 0 < i < n—1 regardless of ¢,, and then one can find ¢, so that p,(x,) = yn;
(2) one makes a general remark about a lower triangular change of basis.

So [A&G] sells (2) as an adaptive form of polynomial interpolation, i.e., that
shows you how you can add one additional data point, and therefore how to add
any number of additional data points, one at a time.

Note that if we define pg,p1,...,Pn—2 analogously to p,—; and p, above, and,
more generally, we let ¢; as the unique real such that

pi(x) = pi—1(x) + ¢i(x — zg) ... (x — 24-1),
then we get, by induction
(3)
pn(x) =cp(z—20) ... (x—xp_1)+tcen_1(x—x0) ... (x—2p_2)+ - +c1(x—2x0) +co,
with ¢g = yo (or, by convention, taking p_i(x) = 0, the zero polynomial). This
formula is often called Newton’s polynomial (for interpolation).
The following theorem may have been known to Newton (reference???).

Theorem 1.1 (The Generalized Mean-Value Theorem). Let xg,...,x, be distinct
reals in a closed interval [a,b]. Say that for i = n — 1,n, p;(x) fits data points
(0,90), - - -, (x4,yi) as above, and let ¢, be given as in (2). Say that y; = f(x;)
for some function, f that is n times differentiable in (a,b) and and n — 1 times
continuously differentiable in [a,b]. Then for some & € (a,b) we have

(4) cn = (&) /n!

Proof. We have g(x) = p,(x) — f(z) has zeros at the n + 1 points zg,...,zp.
Applying Rolle’s theorem repeatedly, we see that g™ (£) = 0 for some ¢ € (a,b),
and hence p(™ (&) = £ (¢). Since the leading term of p(n) is ¢,z", we see that
plM(€) = n! O

Definition 1.2. Let xg,...,x, and f be as in Theorem 1.1. Since ¢,, depends only
on f and zg,...,z,, we use the notation

fHzoy. . yxn} = cn.
Here is a simple remark.

Proposition 1.3. The value of f{xg,...,zn} does not change if we reorder
LOy---y Ly

Proof. pn(z) is the unique polynomial with p(z;) = y; = f(z;) for i = 0,1,...,n,
and hence p,(x) does not change if we reorder the z;. Since p,_1(x) is of degree
less than n, and the z™ coefficient of

en(x—x0). .. (T —xp_1)

is ¢pz™, (2) and Definition 1.2 implies that the z™ coefficient of p,(x) is ¢,
f{=xo,...,x,}. Since p,(z) is independent of the order of xo,...,z,, so is ¢, =
f{x()a"'vxn}' U
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Remark 1.4. Of course, if po(x) = ¢¢ is a constant and fits the point (xg,yo) =
(zo, f(20)), then
f{wo} =co = f(wo).
Next if
p1(w) = co + c1(x — x0) = f(w0) + c1(x — x0),
then py(x1) = f(x1) = y1 implies

f(@1) = f(zo) + c1(z1 — 20),

and hence
f{l'o,dfl} =C = ﬂx;z :j:éx())'
Hence
f{ﬂﬁl,%o} _ f(xo) — f(J?l) _ f(xl) — f(xo) _ f{anxl}-

Tro — T1 Ir1 — o
This gives an example of Proposition 1.3.

Remark 1.5. Similarly, cs is determined by the equation

f(w2) = f{zo} + f{zwo, 21} (w2 — 20) + c2(x2 — 20) (72 — 21),
SO
fl@2) = f(xo) = (w2 — w0) (f(21) — f(20)) /(21 — w0)
(w2 — 1) (w2 — 0)
There are a number of ways to simplify or rewrite this expression. In Section 4 we
see that Lagrange interpolation immediately implies

f (o) f(z1) f(x2)
zo —x1)(xo —22) (21 —20)(T1 —72) (2 — W0) (W2 — 1)
A fact that I believe is due to Newton (reference 777) is to notice that

Az, z2} — f{l"o@l}.

T2 — X0

f{x()vxlqu} = C2 =

fHzo, 1,22} = 2 = (

(5) f{LE(),CChIQ} =

This may lead you to guess a recurrence formula for f{zg,...,2,}. Let us hold
this though for now.

2. DIFFERENCES AND DIVIDED DIFFERENCES

2.1. Triangular Numbers, Differences, and Recurrrences. In class we con-
9 9
sidered the “triangular numbers”

yo=1, y1 =3, y2 =6, 10, 15, 21, 28, 36, 45,...

which represent the number of “dots” in a triangle of side length n — 1 (a picture
here is best, depicting y,, as the number of integer tuples (4,j) such that i > 0,
j>0,andi+j<n-—1).

Of course, you can easily see that y, = (";2) = (n+ 2)(n+ 1)/2; let’s ignore
this, but let’s say you guess that y, may be a quadratic function on n. Based
on knowledge of recurrences, this is equivalent to saying that (¢ — 1)3(y,) = 0,
where o is the shift operator. We can check this by (1) forming the differences
(J - 1)(yn) = Yn41 — Yn, Which yields

3-1=26-3=3,10-6=4, 15-10=5,6, 7, 8, 9,...
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and a simple pattern emerges. To slightly belabour the point, if we apply o — 1 to
this sequence we get the sequence

1,1,1,1,1,...

and applying o — 1 again we get 0,0, ...
It follows that y, is a quadratic function of n, based on what we know about
recurrences: namely the sequence {y, },>0 satisfies (6 — 1)3{y,,} = 0, i.e.,

Yn+3 — 3Yn+2 + 3Yn+1 — Yn = 0.

Earlier in CPSC 303 we have learned that the general solution to this recurrence is
Yn = a + bn + cn?.

Remark 2.1. If we the triangular numbers as measured by some experiment sub-
ject to error, we may “measure” these numbers as:

Jo=1+¢€, 91 =3+¢€1, Yo =64¢€2, 10+ €3, 15+ ¢y, ...
where each ¢; is “small.” In this case we have
(O’ — l)s(gn) = €p43 — 3€n+2 + 3€n+1 — €n

So although the right-hand-side is not indentically 0, if we have |¢;| < 6 for all 4,
then

lents — Benta + 3nt1 — €| < (1+3+3+1)5 = 86;
hence the sequence (o — 1)3(g,) will look like 0 & 83, and hence approximately 0 if

§ is small. Similarly each term of the sequence (o —1)%(§,) equals 1+46, and each
term of (o — 1)%(9,) equals 0 + 644.

2.2. Missing Triangular Numbers. Now let’s say that some of the f(x,) = y,
are unknown, so that you now see a sequence

6) f(O)=1, f(1) =3, f(3) =10, f(4) =15, f(5) =21, f(7) =36, ...,

i.e., you believe you are describing a function f = f(z), but the values of f you
have are at the points

(7) $0:0,371:1,.%'2:3,$3:4,$4:5,$5:7,...

which are not equally spaced. What can you do?
First let us note that if f(x) = a + bx is a linear function, and zg, z1, ... is any
sequence, then

f(@iv1) = f(zi) = (@ig1 — 23)b,
so that
f($i+1) - f(l”i)

Tit1 — X4

b:

regardless of the spacing of xg,x1,x2,.... So instead of applying ¢ — 1 to f(x;), it
makes more sense to divide each difference f(z;+1) — f(x;) by x;41 — 24, and form
the sequence sequence

f(@it1) — f(z:)

Ti41 — X4

= flzi, zip1}-
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Now consider the case at hand, where f(x) = a + bx + cx?. Note that if f(x) =
co + c1(x — x0) + ca(x — x0)(x — x1), then the 22 coefficient of f is cp and, at the
same time, c. By (5),

_ f{mla‘TQ} - f{fo,fﬂl}
Co =

T2 — Zo

c= :f{z03x17x2}

Hence we can inductively compute ¢ from the values of f{z;, z;11}.
For the above data (7) and (6) we compute: (1) f{x;, zit1}:
1, 2, 7/2, 5, 6, 15/2
and (2) f{x;, xit1,Tipa}:
1/2, 1/2, 1/2, 1/2, 1/2.
Of course, we can check our work, i.e., check that f(n) = a+bn+cn? with ¢ = 1/2:
indeed, we know that f(n) = ("5?%) = (1/2)n% + (3/2)n + 1.

2.3. Newton Divided Differences. Based on the success in previous subsection,
the following seems like a reasonable guess for how to tell when f = f(z) is a
polynomial (or approximately a polynomial).

Definition 2.2. Let f: R — R be a function, and zg, x4, ...,z, be a sequence of
distinct reals. We define: f[z;] = x;, and for any 0 < i < j < n we inductively (on
j —1) define

Titls -5 L] = JTiy - -, Tj—

f[xivxi+1,...7l’j]:f[ +1 J] f[ j 1].
Tj—Ti

We call flz;,zit1,...,x;] the Newton divided difference of f and z;,...,x;.

In other words,

f(@it1) — f(za)

fl@i, Tiga] Tl — @5
Flas, 2ot wiso] = flit1, Tita] — f[xu%‘zurl]7
Tit1 — T4
and similarly for f[z;,...,z;].
The fact that the Newton divided differences divide by z; — x; gives us a way
to test how “close” data is to linear, or quadratic, etc., when zo,...,z, are not

equally spaced.
To prove that this trick works, we will prove the following theorem.

Theorem 2.3. With notation in Definitions 1.2 and 2.2, for all f and distinct
reals xg, ..., &, (with n > 0) we have

fHzoy.- sz} = flzo, ..., zn).
(Note that 0! = 1, so the above theorem holds for f{xo} = f(z0) = f[xo])-
[A&G] leaves the proof of this theorem as a short but possibly challenging exer-
cise (Exercise 7, quoted in the middle of page 308, stated at the bottom of page 326).
We will prove this theorem at the end of Section 4. For now, let’s assume the the-
orem is true and derive a corollary.

Corollary 2.4. If f(x) is a polynomial of degree at most n—1, and xg,...,xz, are
distinct reals, then flxg,...,2,] = 0.

Proof. By Theorem 1.1, we have (7), i.e., f{zo,...,zn} = f™(&)/n! = 0. Now
apply Theorem 2.3. (]
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3. UPPER/LOWER TRIANGULAR SYSTEMS

[A&G] make a brief remark about changing bases from, say, 1,z,2% to 1, (z —
xo), (x —x9)(x —x1), both of which are bases for the space of polynomials of degree
at most 2 (with zg,z; fixed reals). It is worth considering this point, without
formally defining a basis of a vector space (here bases is the plural of basis).

This is a fundamental observation about “upper/lower triangular change of ba-
sis” that occurs in many applications in many disciplines.

In terms of matrices, the point is that matrices that are upper triangular, such

0 b a b c
{0 d} , 0 d e
0 0 e
are invertible provided that their diagonal entries are nonzero; furthermore the
inverses are also upper triangular, and this can be proven by seeing that all steps
in Gauss-Jordan elimination used to compute the inverse are “upper triangular
operations.” [This is taught in CPSC 302, especially in in Chapter 5 of [A&G],
which discusses the LU-decomposition.]

In the application in Section 10.4 to Newton polynomials, the story of “upper
triangular change of basis” goes like this: say that ¢y, ..., ¢, are polynomials such
that for all i € [n], ¢; is exactly of degree ¢; then any polynomial, p = p(x), of degre
n over R,

as

p(z) =co+crz+-- +cpa”
can be uniquely expressed as a linear combination
(8) p(l‘) = O40(1)0(3:) + an¢n(x)a

since the a;’s can be written in terms of the ¢;’s, and vice versa, in terms on an
upper triangular matrix. This is an extremely important observation.

Example 3.1. For every cg, c1, o there is a unique «q, ay, as such that
9) co+ 1w+ cox? = ag + ag(z — 1) + az(z — 1)?
(where = means equal as polynomials), since
a+ar(z— 1)+ ag(x —1)? = 2%as + a:(—2a2 + al) + (ozg —aq + ao),

and therefore (9) is equivalent to

1 -2 1 (6%} C2
0 1 -1 Q1| = |C1|
0 0 1 Cto_ Co
we easily see that
1 -2 177" 121
0o 1 -1 =10 1 1},
0 0 1 0 0 1
and hence the linear system above is equivalent to
1 2 1 C2 Qo
0 1 1 C1| = |
0 0 1 Co (7))
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Example 3.2. The notation in the above example is a little cumbersome. One
can equivalently write

1 -2 17 [2? (x —1)?
1 -1 z| =] z-1 |,
1

o
s}
—_
—_

so that the column vectors are functions (and the entries of the matrices are viewed
either (1) as “scalars” (in R), or (2) as “functions” (themselves)). Then inverting
the above matrix and multiplying on the left we get

z? 1 2 1] [(z—1)2
z|=1(0 1 1 z—1
1 0 0 1 1

Of course, we know that the following holds, since if we set y+1=x,s0y =z —1,
the above relations of functions is equivalent to

(y+1)2 1 2 1] [y
y+1 [ =10 1 1] |y]|,
1 0 0 1 1
which we easily see to be true by writing (y+ 1)% and y + 1 as a function of y?,y, 1.
Example 3.3. Let p(z) = 3 + 4z + 522, and consider the task of writing p(z) as
(303) + a1 (20202 + 2021) + (1322 + 18z + 120),

which is (8) in the special case n = 2 and ¢g = 303, ¢1 = 2020x + 2021, ¢y =
1322 + 182 + 120. This gives us the system

13 18 1207 [as
0 2020 2021| |ay| =
0 0 303 |ao

W = Ut

The equation
co + 1o + car? = ap(303) + a1 (20202 4 2021) + (1322 + 18z 4 120)
is equvalent to writing

13 18 120 (65) Co
(10) 0 2020 2021| (1| = |1

0 0 303 (7)) Co
We compute

-1

13 18 120 1/13  —9/13130 —34337/1326130
0 2020 2021 = 0 1/2020 —2021/612060 | ,
0 0 303 0 0 1/303
and it follows that (10) is equivalent to the “inverse” upper triangular system:
s 1/13  —9/13130 —34337/1326130| |co
a| = 0 1/2020 —2021/612060 c1

g 0 0 1/303 co
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Example 3.4. The formulas
cos(2x) = 2cos®x — 1, cos(4x) = 8cos® x — 8cos? +1

can be written as

8§ -8 1 cos* cos(4x)
0 2 —1| [cos’z| = |cos(2z)
0 0 1 1 1
Which is equivalent to writing
cost z g8 -8 117" cos(4x)
cos’z| =10 2 -1 cos(2x)
1 0 O 1 1

1/8 1/2 3/8]| |cos(4x)
=0 1/2 1/2| |cos(2z)
0 0 1 1
This gives rise to the formulas

cos? z = (1/2) cos(2x) + (1/2), cos* x = (1/8) cos(4x) 4 (1/2) cos(2x) + (3/8),
useful in integrating cos? x and cos? z.

See the exercises for more examples of upper triangular “basis exchange.”

4. DIVIDED DIFFERENCES AND THE LAGRANGE FORMULA

The Lagrange formula for p(x) that interpolates three data points (x;,y;) with
1=0,1,2 (and zg, 21, z2 distinct is

(x — 1) (z — x2) (x — zo)(x — x2) (x — zo)(z — x1)
“(z0—21)(wo —w2) | 7 (w1 —wo) (w1 —w2) (72— 30) (72 — 71)
and hence the z2 coefficient of this polynomial is coz? where
(11) ey = Yo Y1 Y2

(o —x1)(wo —x2) (21 —xo)(21 —22) (22 — 20)(22 — 21)
A similar considering gives the following formula.
Proposition 4.1. Let xg, ..., x, be distinct reals, and let p(x) be the unique polyno-

mial of degree at most n that interpolates the n+1 data points (2o, Yo), - -+, (Tn, Yn)-
Then the x™ coefficient of p(x) is cp,a™ where

Cn = Z(yz / H(l‘z - ZCJ))
i=0 G
In particular, for any f: R — R we have
Flaooovnd = 3 (56 [ Ttwi—2)
i=0 J#i
Theorem 4.2. Let x,...,x, be distinct reals and f: R — R. Then
(12) Flzo,. . am} = Az, .. an} — fxo, ... 795”,1}.

LTn — To

Note that it may be easier to understand the proof below by writing out the
special case n = 2 or n = 3 of this proof (to avoid the somewhat cumbersome
notation in the proof).
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Proof. Let 1 <i <n —1; the f(x;) term in the expression
(13) Hzo, o on} — fzo, .o 201}

S/ ) </ )
] _m(/m )~ </m )
ST ) =t/ Tl ==).

and hence equals (z, — x) times the f(x;) coefficient in the left-hand-side of (12).
Hence the f(z;) coeffient of both the left-hand-side and the right-hand-size of (12)
are equal.

It remains to see that the coefficient of f(z¢) and of f(x,) in both sides of
(12) are equal, and this is easier: the f(xg) coefficient of (12) is not present in
f{z1,...,2,}, and hence is

( / AL o—zj>) = (m—zo) / j1;[0<xo_xj)>

which is x,, — o times the f(z() coefficient in the left-hand-side of (12). Hence the
f(zo) coefficient of (12) are equal.
Similarly for the f(x,) coefficient. O

Of course, the above theorem immediately implies Theorem 2.3.

Proof of Theorem 2.3. Use Theorem 4.2 and induction on n. (I

5. THE REMAINDER THEOREM FOR THE ERROR IN POLYNOMIAL
INTERPOLATION

In this section we use the Generalized Mean-Value Theorem above and one clever
idea to prove a Remainder Theorem for the error in polynomial interpolation, given
in Section 10.5 in [A&G]. After doing so we summarize Section 10.6 of [A&G].

Given distinct xg,...,%n,Tpnt1 € R in an interval (a,b), and a function
f: (a,b) — R that is (n + 1)-times differentiable, let p,(z) be the unique poly-
nomial of at most degree n that agrees with f on zy,...,z,, and p,+1 the unique
polynomial of degree at most n + 1 that agrees with f on zg,..., 2., Z,11. Then

Prt1(x) —pr(x) = (& —20) ... (& — Tpe1) (@ — Tp) flXos -+, Tg]s
which by the Generalized Mean-Value Theorem equals
F©)
(n+1)!

for some & € (a,b). Now take & = x4 in the above formula (we regard this is a
clever trick): we get

(x—20)...(x —zp_1)(x — )

FrOE)

Prt1(@n41) = Pn(@ns1) + (Fng1 — o) - (Tng1 — Tn—1) (Tng1 — 2n) (n+1)!°
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But recall that p,41(z) and f(x) agree on x = x,41. Hence

F©)

(n+ 1)1
But since x,,4+1 is any real different from xg,...,z,, one can say that for any

x € (a,b) there is a £ € (a,b) such that

f(@nt1) = pu(Tng1) + (@ns1 — 20) - (Tng1 — Tno1)(Tpg1 — Tn)

Frt(e)
(n+ 1)1
Of course, if x is not distinct from the zg, ..., z,, i.e., for some i we have x = x;,
then the above formula holds automatically (for any &) since f(z;) = p(z;) and the
(x; —x0)...(x; —xpn) =0.
Section 10.6 of [A&G] makes the following point: imagine that |f™+1)(¢)| is

bounded on (a,b) by M. Then the error in interpolation, for any z € (a,b), is
bounded by

f@)=pp(x) +(x —20) ... (¢ — Tp_1)(x — )

M
(14) |f(x) *pn($)| < m ;él(%)(li)) |z — x| ... | — 2p)

Furthermore, by the remainder theorem, this inequality is not far from equality

when | f("*1)| is “close to” M throughout (a,b). So if we are able choose zq, . .., 2,
as we like, we might choose the zg,...,x, so that

max |z —xg| ... |x — x|

z€(a,b)
is small as possible; this choice of xq,...,x, are Chebyshev points for the interval
(a,b). Section 10.6 explains more about such xzo, ..., z,.

6. THE NEWTON POLYNOMIAL: A “UNIFORM” FORMULA IN THE PRESENCE OF
DEGENERACY

In this section we emphasize some points made in Section 10.7 of [A&G].

The real selling point of the Newton form of interpolation (1) for the unique
polynomial p such that p and f agree “on all z;” is that it is valid for all zq, ..., z, €
R—not merely x; that are all distinct—provided that f is sufficiently differentiable.
Furthermore, f[zo,...,Zn] is continous (differentiable, twice differentiable, etc.) in
Zg, ..., T, provided that f satisfies certain properties.

In other words, the Newton form of polynomials interpolation holds for any
Xy .., Tn, and the divided differences f[zg, ..., x| express what happens in “de-
generate cases” when some of the z; are the same (or nearly the same). Let us
explain what this means.

6.1. A Degenerate Case of zy = x;. Let us consider some “degenerate limits”
in interpolation from the point of view of Newton’s formula.
First consider the case xg =2, 11 =2+ ¢

p(x) = f(2)+ (z—2)f[2,2+¢€].
We have
[+ 1) _

assuming the derivative f’(2) exists. For this reason it is natural to define

f'(2),

iy £12,2+ ¢ = limy

def

f12,21 =
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when f’(2) exists; then € — 0 gives the formula

p(x) = f(2) + (z = 2)f[2,2],

and the limiting interpolating (linear) polynomial is

(15) px) = f(2) + (z = 2)f[2,2] = f(2) + (= - 2)'(2),

which is the familiar tangent line of f at z = 2.

6.2. Agreement to Higher Order. Note that in (15) we have that p(x) is the
tangent line to f(z) at © = 2; hence we conclude

p(2) = £(2), p'(2) = £'(2) = f[2,2]
(which we can also conclude by differentiating p(x)), and so we say that p and
f agree to order two at x = 2. More generally, for £k = 1,2,... we say that two
functions g, f agree to order k at x = a if

g9(a) = f(a), '(a) = f'(a), -..,g* (a) = f*V(a),
i.e., if g — f and its first k — 1 derivatives vanish at = a (assuming that all these
derivatives exist).
6.3. Another zy = x; Degenerate Case. Next consider the case zg = 2, 1 =
2+ ¢, and x3 = 3 in Newton’s polynomial, where € is a real number:
p(z) = f(2) + (z = 2)f[2,2+ ¢ + (2 = 2)(z = (2+€)) f12.2 + €, 5].
Taking € — 0 gives the formula

p(l’) = f(2) + (z — 2)f[zv 2} + (CL‘ - 2)2f[27 2, 5]>
provided that we define
£12,2,5] < lim £[2,2 + €, 5]
e—0
and this limit exists (and that we define f[2,2] as f’(2)). Unlike the situation in
the previous subsection with f[2,2], the question of whether or not the limit

lim (2,2 + ¢, 5]

exists is more subtle; however, since 2,2 + €, 5 are distinct reals for small € # 0, we
have
f12,5] — f[2,2 + €]

5—(2+¢€)
(using the symmetry of f[zg,x1,z2] under permuting the xg, z1, z2), so if f[2,2] =
1(2) exists, we have

iy £[2,2 + €, 5] = limy

1o 71251 = f2.24d _ f12,5] - f[2,2]
=0 5—(2+%¢) 3 '
More generally, if x1 = xo but xo # zg, and if f is differentiable at = x(, then
flzo, o] and f[xo, xo, z2] both exist and
flwo, z2] — flzo, o]

flzo, 2o, 2] = .
X9 — X

Hence the formula

flay, wo] = flao, 1]
T2 — To

also holds when xy = z1 provided that f’(x) exists.

f[an'rlva] -
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Note that is this case we have a limiting Newton polynomial, p(x), given by

pla) = f12] + (z = 2)f[2,2] + (= — 2)f[2,2,5].
This shows that
p(2) = f(2), P'(2) = f'(2),
and hence again p, f agree to order two at x = 2.

This situation and the one in the previous subsection are “degenerate” cases
ro = x1 = 2, where the value 2 occurs twice among the zy,...,z,. This results in
p, f agreeing to order two at x = 2. This is how we generally interpret degenerate
cases of interpolation, where we allow some of the xg,...,x, to be the same, and

we accordingly get higher order agreement on the x; that are repeated. This is
spelled out at the bottom of page 319 (Section 10.7) of [A&G].

6.4. Multiple Roots and Multiple Argreement. Another way to understand
agreement to multiple orders is via multiple roots in polynomials, which you have
likely already seen somewhere.
The polynomial
pla) = (z = 1)(z —5)>*(x — 7)°
is said to have a simple root at x = 1, a double root at * = 5, and a triple root at
x = 7. Some computation shows that

p(z) = 2(x — 5)(x — 7)*(32% — 23z + 32),

which indicates the general principle that if p has a double root (respectively, triple
root, etc.) at x = a, then p’ has a single root (respectively, double root, etc.) at
x = a. More genearlly, whenever

p(z) = (z —7)%q(x)
for another polynomial ¢(z), the product rule shows that
p'(a) = 3(z = 7)?q(z) + (z = 7)°¢(2),
and so p’(z) is necessarily divisible by (x — 7)2; hence if p(z) has a root or zero of
order 3 at x = 7, then p’(x) must have a root or zero of order at least 2 at x = 7.

More generally, if f: R — R is n-times differentiable, and k£ < n is an integer,
we say that f = f(z) has a root (or zero) of order at least k at x = a if

fla) = f'(a)=--- = f*V(a) =0,
and of order exactly k if, moreover, f(¥)(a) # 0. Tt follows from this definition that
if f has a zero of order at least k (respectively, exactly k) at x = a, then f’ has a
zero of order at least k — 1 (respectively, exactly k — 1).
It follows that if two functions g, f agree at * = a to some order k, then it is
equivalent to say that g — f has a zero at x = a to order k.

6.5. Rolle’s Theorem for Multiple Agreement. Rolle’s theorem implies that
if f has n + 1 roots on some interval, then f’ has n roots on this interval, and f”
has n — 1 roots on this interval, etc., assuming that f has enough derivatives.

We can also prove a Rolle’s theorem for multiple agreement; it is easiest to
understand this by an example: if a function f has a zero of order 10 at = 1 and
a zero of order 20 at x = 2, then “counting mulitiplicites” we say that f has at
least 10 4+ 20 = 30 zeros. Rolle’s theorem implies that f/(§) = 0 for some £ with
1 < € < 2; we also know that f’ will have a zero of order at least 9 at x = 1 and



CPSC 303: REMARKS ON DIVIDED DIFFERENCES (2024 VERSION) 13

at least 19 at x = 2; this which gives 1 +9 4+ 19 = 29 zeros of f. Hence the 30
“zeros counted with multiplicty” of f on [1,2] implies that f’ has at least 29 zeros
counted with multiplicity on [1,2].

In this fashion, counting intermediate zeros of f’ along with guaranteed zeros of
f due to multiplicity, we can prove that if f is differentiable on some interval and
has n + 1 zeros there (counted with mulitplicity), then f’ has at least n zero there
(counted with multiplicity), and f” at least n — 1, etc.

6.6. General Interpolation. Say that f is a differentiable function, and we seek
a polynomial
p(z) = co + 12 + oz’

such that p that agrees with f on the points xg,z1,z2 where g = z; = 5 and
r9 = 8: we interpret this problem is that we want

p(5) = £(5), p'(5) = f'(5), p(8) = f(8),
since the value 5 occurs twice among the zq, z1, x2. Since
P (z) = c1 + 2com,

and hence
P’ (5) = ¢1 + 10¢s,

the above problem amounts to solving the system

1 5 25| [e £(5)
0 1 10| |e| = |F(5)
1 8 64| |co £(8)

We can prove that this system has a unique solution by modifying the proof that
the interpolation problem with xg, 21, zs distinct has a unique solution: namely,
the homogeneous system is

1 5 25] [eo 0
0 1 10| e = |0},
1 8 64| |co 0

and any solution cz, ¢y, cq yields a polynomial p(x) = co + c1z + c22? that has a
double zero at x = 5 and a single zero at = 8. This implies that p(x), if nonzero,
must be divisible by (x — 5)?(z — 8), which is impossible since p is of degree at
most 2. [One could also prove that p(z) must be zero using our generalized Rolle’s
Theorem.] Hence the only solution to the homogeneous system is ¢y = ¢; = ¢ = 0.
Hence any non-homogeneous form of this system has a unique solution.

6.7. Taylor Series. If f: R — R is n-times differentiable near a point x = a, then

as xo, ..., T, all tend to a, the Mean-Value theorem implies that
lef .. f*)(a
f[a,...,a](:e lm  flzo,...,z,] = '(),
—_—— TOseny T =0 k!
k times

provided that f is k-times differentiable near x = a and its k-derivative is continuous
at = a. In this way, (3), in the case

Top=—=x1=...=2Tp=a
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becomes the polynomial

(@)

n!

f"(a)

p() = fla)+ (@ —a)f(a) + == (z—a)’ +---+ (z—a)",

which is Taylor’s theorem, we know agrees with f “up to order n 4+ 1” by Taylor’s
theorem. Furthermore, the error in the Taylor expansion is given by the “Remainder
Term” in Taylor’s theorem,

A3
p(z) — f(z) = 1)

for some £ between a and z, which is a special case of the “Error in Polynomial
Interpolation” formula.

7. DIVIDED DIFFERENCES: SOME SUBTLETIES

Let us briefly comment on what we are “sweeping under the rug” (i.e., avoiding)
in CPSC 303 regarding divided differences; we will complement this by stating
some theorems. The real question is how does f[zo,...,x,] behave as a function
of (zg,...,z,) € R (including those points where some of the z; are equal): this is
both a “selling point” of divided differences, but also a subtle issue.

7.1. The Divided Difference f[zg,z1]. We have already mentioned that
lim f[2,2 + ¢]
exists and equals f/(2). However, it is not generally true that

lim flzo, 1]
210,2:14)2

exists even if f/(2) exists: indeed, f[xg,x1] is the slope of the secant line of f at
x = xo and & = x1; it is not hard to see that if f’ is discontinuous at = = 2, then
the limit

s, fl70, 1]

does not exist. In this case it impossible to define f[xg, 1] in a way that makes it
a continuous function at xo = x7 = 2 (although we generally define f[2,2] = f/(2)
for reasons mentioned before).

However, the optimistic side to this secant line consideration is the following
easy result.

Theorem 7.1. If f: R — R is differentiable (on all of R), then define f[xq, o]
to be f'(xg) for all xy € R. If f' is continuous (on all of R), then flxg,x1] is
continuous (at all (xg,z1) € R?).

2 Here is a standard example of a function, f, whose derivative exists everywhere but is
discontinuous at = 2: if we define f(2) = 0, and for x # 2 we define

f(@) = (z = 2)%sin (1/(z - 2)?),
then we have f/(2) = 0 (essentially because f is bounded above by (z—2)2 and below by —(z—2)2,
and these two functions osculate at © = 2 (i.e., &(z — 2)2 agree to order two at = = 2). On the
other hand, for z # 2 we have

f(z) = 2(x — 2)sin (1/(z — 2)?) +

- _22 cos (1/(z — 2)?),

which is not even bounded as x — 2.
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(This theorem speaks of continuity of functions on R?; this knowledge is not a
prerequisite for CPSC 303, and hence I will briefly explain this concept when/if we
cover in in CPSC 303.)

Proof. 1t suffices to fix (ag,a;) € R? and to show that

hm f[l'(),afl] = f[a’Oaal]'
(zg,zl)ﬁ(ao,al)

If ag # aq, then for (g, z1) sufficiently close to (ag,a1) we have zy # x1, and
hence
f(x1) — f(xo)  fla1) — flao)

lim To,T1] = lim = = flag, a1].
(a:g,a:l)%(ao,al)f[ 0 1} (wo,zl)—)(ao,al) .'L'l - LL‘Q al - a/() f[ 0 1}

Otherwise ag = ay; for xg = 1 we have

flzo, x1] = flzo, mo] = f'(w0),

and for zg # x1, the Mean-Value theorem implies

flzo, z1] = f/(€)

for some & between zg and x1. It follows that

| flwo, z1] — flao, aol| < | f/(€) = f'(ao)],

and so for |29 — ag| < € and |z — ag| < € we have

| flzo, 1] — flao, ao)| < max |f'(€) — f'(ao)|.

T |é—ao|<e

Since f’ is continuous, it follows that

flzo, z1] = flao, a1].
(zo,2z1)—(ao,a1)

O

Ideally one wants that f[zo,...,2,] not merely be continuous in z, ..., z,, but
also differentiable, or infinitly-differentiable, etc. At present I don’t know a reference
where such issues are studied in a simple fashion. Such issues are discussed starting
in Section 7 of de Boor’s survey, “Divided Differences” (available at https://
arxiv.org/abs/math/0502036) which I recommend. This survey is more technical
than [A&G] and requires some math on the level of UBC’s Math 320: for example,
you need to know that if M: X — R™*" is a continuous map from a topological
space, X (e.g., X = R™ for some m), to the space of real n x n matrices, then if
M (z) is invertible for all z € X, then the map

T (M(;r))71 € R

is also continuous for all z (in view of the formula M~*(I — A)~' = M~Y(I + A+
A% +...) for |A]| <1 in any matrix norm).


https://arxiv.org/abs/math/0502036
https://arxiv.org/abs/math/0502036
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EXERCISES
Describe does the following MATLAB code does:

clear
i=-10:1:15
x = i/10

y = X.*X

z =x."3

xpli = x * pi
f = sin(x * pi)
t=-1:0.1:1

and explain or summarize the error message(s) that you get when you type

X*X
x~3

(i.e., don’t just copy the error message down word for word.)

In this exercise we consider

f(z) = sin(z)
Taylor’s theorem with remainder implies that for every = € [—1, 1] we have
(the Taylor expansion)
f(z) =sin(z) = x — 23/3! + 2°/5! — Rz (),
where Ry (z) is a function of x such that for every = € [—1,1] there is a
¢ € [-1,1] such that
Rz (x) = 2" cos(€) /7!
(a) Explain why for any x € [—1,1] we have
|R7(z)| < 1/7!' = .00019841 . ..

(b) What is the largest value of |R7(x)| where R7(x) is given as above,

with

Ry (z) = sin(z) — z + 2®/3! — 2°/5!
for x = ¢/1000 and ¢ = —1000, ...,1000? Check this by running the
MATLAB code:

clear

x = ( -1000:1000 ) / 1000
abs_r7=abs( sin(x)-x+x."3/6-x.75/120)
max( abs_r7 )

How close is this maximum absolute value of the error to the upper
bound on |R7(z)| in part (a)?
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(3) The Chebyshev points on (—1,1) are defined (see Section 10.6 of [A&G])
for each positive integer n as the n + 1 points zo, ..., Zx,.

(a)

% +1
xi:cos<w>, i=0,1,....n

2(n+1)
Generate the n = 5 values of x, ..., x5 using the code:
clear
vi = 0:5

cheb = cos( (2 * vi + 1) % pi/ 12)

For x,...,x5 being the Chebyshev points above (with n = 5), find
the maximum absolute value of

v(z) = (z —zo)(x —21)...(x — x5)

for z = i/1000 with ¢ = —1000,—999,...,999,1000 using MATLAB.
You could do this by adding the code

v = 1:2001
for i= 1 : 2001 , v(i) = prod( (1i-1001) /1000 -cheb); end
max (abs (v))

Based on (1), if we interpolate f(z) = sin(x) at xq,...,zs, show that
the error in this interpolation at any x € R is at most

(x —xo)(x —21) ... (x — x5)
6!

in absolute value. [Hint: f©)(2) = —sin(z).]

Use the bound in part (c) and the experiment in part (b), give an
upper bound on the largest error in interpolation for x = ¢/1000 with
1 = —1000, —999, . .., 1000.

Then interpoloate sin(x) at the Chebyshev point xg,...,z5, and
find the error in interpolation over all z = 4/1000 with ¢ =
~1000, —999, . . ., 1000.

sin_cheb = sin(cheb)

p = polyfit( cheb, sin_cheb, 5) % this returns the coefficients cO,...

-1 :0.001 : 1
polyval(p,x)

X

y

sinx = sin(x)
max( abs( y - sinx ) )

(4) In this exercise we will specify 6 real numbers xo, ..., x5 and consider the
largest absolute value of the polynomial

v(z) = (z —zo)(x —21)...(x — x5)

,cb
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over all x € [-1,1] (i.e,, all z € R with —1 < a2 <1).

(a)

(b)

()

If 2o =21 = ... = 25 = 0, at which = € [—1,1] does v(x) attain
its maximum value, and what is this value? Just give the answer;
it should be clear once you compute v(z). [Hint: In this case,
v(z) = 2%

Let zp =1 = —1, z9 = 23 = 0, and x4 = x5 = 1. Using calculus, find
the (exact) value(s) of « € [—1, 1] at which v(z) attains its maximum
absolute value. [Hint: v(z) = (23 — x)?; you need to check v(x) at
the endpoints 1, and then check the value of v(x) for the values of x
where v'(x) = 0.] What is the maximum absolute value of v(z), both
exactly and as a decimal to 4 digits?

If xg,...,x5 are the n = 5 Chebyshev points of Problem 3, approx-
imate the maximum absolute value of v(x) by checking the values
x = /1000 and ¢ = —1000, 999, ...,1000. [If you have done Prob-
lem 3 above, then you have already found this value.]

How close is your value in part (c¢) to the 1/327 Type max(abs(v))
- 1/32 to find out. [In Section 10.6 we will learn that the maximum
absolute value of v(z) over all x = [—1, 1] is (in exact arithmetic) 1/32.]
By what factor is the maximum absolute value in part (b) an improve-
ment over part (a)? And, similarly, for part (c) over part (b)?

(5) More exercises to follow.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC
V6T 1Z4, CANADA.
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