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2 JOEL FRIEDMAN

Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 303: use this material
at your own risk. . .

The main goals of this article is to motivate and define the condition number of
a square matrix, and to explain the usefulness and shortcomings of this definition
regarding interpolation. At the end of this article we will define what we call a
bi-normed condition number, that involves two norms, making it much easier to
understand what is going on with the examples regarding interpolation.

The condition number is studied in more detail in CPSC 302 and Section 5.8 of
the course textbook [A&G] (by Ascher and Greif). It is defined in terms of relative
error, measured in various `p-norms for p ≥ 1 (see Section 4.2 of [A&G]). We will
review these concepts after some motivating examples.

1. Motivating Examples from Interpolation

Consider fitting data (xi, yi) with i = 0, . . . , n to a polynomial p(x) (we switch
from v(x) to p(x) after Section 10.1 of [A&G]) of degree at most n, where
x0, x2, x3, . . . , xn are fixed and distinct, and x1 = x1(ε) = x0 + ε where we think of
ε > 0 as very small; eventually we will take a limit as ε→ 0.

1.1. An n = 1 Example: the Tangent Line of Calculus. Consider case n = 1
in the example of data points (x0, y0), (x1, y1) where x0 = 2 and x1 = 2 + ε, which
gives us the 2× 2 system

(1)

[
1 2
1 2 + ε

] [
c0
c1

]
=

[
y0
y1

]
,

or equivalently

(2)

[
1 2
0 ε

] [
c0
c1

]
=

[
y0

y1 − y0

]
,

or equivalently

(3)

[
1 2
0 1

] [
c0
c1

]
=

[
y0

(y1 − y0)/ε

]
,

The condition number of the systems (1) and (2) turn out to be very large (i.e.,
very bad) for small ε, but that of (3) is reasonable. Of course, if y0 = f(x0) and
y1 = f(x1) where f is a differentiable function, then

(y1 − y0)/ε =
f(2 + ε)− f(2)

ε
,

whose limit as ε→ 0 is f ′(2). Hence the ε→ 0 limit of (3) when yi = f(xi) is[
1 2
0 1

] [
c0
c1

]
= lim
ε→0

[
f(2)(

f(2 + ε)− f(2)
)
/ε

]
=

[
f(2)
f ′(2)

]
⇒ c1 = f ′(2), c0 = f(2)−2f ′(2)

which is the line

p(x) =
(
f(2)− 2f ′(2)

)
+ f ′(2)x = f(2) + (x− 2)f ′(2)

(you should recognize f(2) + (x− 2)f ′(2) from calculus as the tangent line to f at
x = 2).



CPSC 303: WHAT THE CONDITION NUMBER DOES AND DOES NOT TELL US 3

1.2. Degeneracy in Interpolation is Not Degenerate and Yields Deriva-
tives. The “degeneracy” above, i.e., x1 = x0+ε with x0 fixed and ε→ 0—and sim-
ilar “degeneracies” where some of the xi are infinitesimally close—will be extremely
important when we study splines (Chapter 11 of [A&G]) and are an essential part
of our discussion of interpolation (Chapter 10 of [A&G]). Furthermore, such degen-
eracies also arise and are an essential topic in linear interpolation more general than
polynomial interpolation (such interpolation is briefly discussed in Section 10.1 of
[A&G]).

The main point is that these degenaracies—such as x1 = x0 + ε—become deriv-
ative conditions in the ε → 0 limit. Furthermore, even before we take the limit,
the fact that we divide certain equations by ε makes the condition number go from
bad to good.

It follows that the condition number does not tell us what we really want to
know about degenerate interpolation and derivatives, at least until we divide certain
equations by ε. It is extremely important—once we define and study the condition
number—to understand this.

1.3. An n = 2 Example With One Derivative. A similar example to the last,
except with n = 2 would be x0 = 2, x1 = 2 + ε, x2 = 3, which yields the system

(4)

1 2 4
1 2 + ε (2 + ε)2

1 3 9

c0c1
c2

 =

y0y1
y2

 ,
or equivalently,

(5)

1 2 4
1 ε 4ε+ ε2

1 3 9

c0c1
c2

 =

 y0
y1 − y0
y2

 ,
and both systems turn out to be “poorly conditioned” systems for small ε; by
contrast, the equivalent system1 2 4

0 1 2 + ε
1 3 9

c0c1
c2

 =

 y0
(y1 − y0)/ε

y2


is well conditioned; if yi = f(xi) then the ε→ 0 limit of this system is1 2 4

0 1 2
1 3 9

c0c1
c2

 =

f(2)
f ′(2)
f(3)


which means that p(x) = c0+c1x+c2x

2 is the (unique) polynomial with p(2) = f(2),
p′(2) = f ′(2), and p(3) = f(3).

1.4. A Doubly Degenate Example and Taylor Series. Consider an example
with x0 = 2, x1 = 2 + ε, and x2 = 2 + 2ε. This gives the system1 2 4

1 2 + ε (2 + ε)2

1 2 + 2ε (2 + 2ε)2

c0c1
c2

 =

y0y1
y2

 ;
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subtracting the first row from the second row and the third row yields1 2 4
0 ε 4ε+ ε2

0 2ε 8ε+ 4ε2

c0c1
c2

 =

 y0
y1 − y0
y2 − y0

 ;

subtracting 2 times the second row from the third row yields

(6)

1 2 4
0 ε 4ε+ ε2

0 0 2ε2

c0c1
c2

 =

 y0
y1 − y0

y2 − y0 − 2(y1 − y0)

 ;

all of the above systems are extremely poorly conditioned: once we define the
condition number, we will see that all of the above systems in this subsection—
which involve a “doubly degenerate”—have condition number of order 1/ε2; the
systems (1) and (2) (and (5)) will have condition number of order 1/ε. However,
when we divide the second row by ε and the third row by ε2, we get the system

(7)

1 2 4
0 1 4 + ε
0 0 2

c0c1
c2

 =

 y0
(y1 − y0)/ε(

y2 − y0 − 2(y1 − y0)
)
/ε2


which is “well-conditioned,” i.e., has a moderate condition number. If f = f(x) is
twice differentiable at x = 2, then as ε→ 0 we have y0

(y1 − y0)/ε(
y2 − y0 − 2(y1 − y0)

)
/ε2

 ε→0−−−→

f(2)
f ′(2)
L


where

L = lim
ε→0

f(2 + 2ε)− 2f(2 + ε) + f(2)

ε2
.

We may compute L either by

(1) applying L’Hôpital’s Rule twice:

L = lim
ε→0

f(2 + 2ε)− 2f(2 + ε) + f(2)

ε2
= lim
ε→0

2f ′(2 + 2ε)− 2f ′(2 + ε)

2ε

= lim
ε→0

4f ′′(2 + 2ε)− 2f ′′(2 + ε)

2
=

4f ′′(2)− 2f ′′(2)

2
= f ′′(2);

or
(2) by using Talyor series:

f(2 + 2ε) = f(2) + 2εf ′(2) +
(2ε)2

2
f ′′(2) + o(ε2)

f(2 + ε) = f(2) + εf ′(2) +
ε2

2
f ′′(2) + o(ε2)

which gives (after some algebra)

L = lim
ε→0

f(2 + 2ε)− 2f(2 + ε) + f(2)

ε2
= lim
ε→0

ε2 f ′′(2) + o(ε2)

ε2
= f ′′(2).

Hence (1.4) implies that the ε→ 0 of (7) is1 2 4
0 1 4
0 0 2

c0c1
c2

 =

 f(2)
f ′(2)
f ′′(2)

 .
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After some algebra, we see that p(x) = c0 + xc1 + x2c2 can be written as

p(x) = f(2) + (x− 2)f ′(2) +
(x− 2)2

2
f ′′(2),

which you should recognize as the second order Taylor expansion of f about x = 2.

2. More Motivation (From General Linear Algebra) for the
Condition Number

The condition number is an important consideration in any type of linear algebra,
not merely interpolation. In this section we give additional motivation from linear
algebra to study the condition number.

2.1. Sensitivity in General n × n Systems. The idea behind the condition
involves solving an n×n system of equations Ax = b, where x is an n×1 (“column
vector”) of unknowns, b is a given n×1 (the “constants” of the equation or “system
of equations”), and A is an n× n matrix (the “coefficients” of the equation); here
we typically work over the real or complex numbers. We typically assume that A
is invertible, so that for any b the system Ax = b has a unique solution x = A−1b.

In practice we are often interested in all possible values of Ã−1b̃ where the pairs

(Ã, b̃) range over some values that are “close to” (A,b), and we hope that the values

of Ã−1b̃ do not differ by much from one another. We may also be interested in the

“typical range of values” value of Ã−1b̃ where (Ã, b̃) range over some probability
distribution.

Generally speaking (and rather imprecisely) we say that an n × n system is
sensitive if a small change in its constants (i.e., in b) and/or in its coefficients (i.e.,
in A) gives a large change in the solution. Analyzing such changes precisely can be
very difficult, but the condition number will measure this to some extent.

Let us give some examples of question regarding sensitivity.

2.2. Sensitivity in General Interpolation.

Example 2.1. We measure three data points (x0, y0), (x1, y1), (x2, y2) which we fit
exactly with a polynomial v(x) = c0 + c1x+ c2x

2, which determine c0, c1, c2 as:c0c1
c2

 = A−1b, where

1 x0 x20
1 x1 x21
1 x2 x22

 , b =

y0y1
y2

 .
However, if there are errors in measuring the data (xi, yi), or the model is only an
approximation, we may be interested in knowing all possible values of A−1b defined
as above, with each xi and each yi replaced by a range of possible values. We may
also be interested in the same where each xi and yi vary over some probability
distribution.

Knowing all values or a typical value in this first example is very difficult; we
might settle for an approximate solution or a bound on how “bad” the solution can
get.
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2.3. Optimal Sensitivity: Diagonal Systems.

Example 2.2. We wish to determine all possible values of x = A−1b where

A =

[
107 0
0 3

]
, b =

[
4± 0.04
3± 0.03

]
.

Therefore A is known exactly, and each value of b is known to within 1%. (Tech-
nically, 4 ± 0.04 refers to the set of real x with 3.96 ≤ x ≤ 4.04.) It is easy to see
that each value of x is known to within 1%, namely

x1 = 10−7(4± 0.04), x2 = (1/3)(3± 0.03).

A similar remark holds whenever A is a fixed diagonal matrix: if each component
of b known to within 1%, or any percent, the solution x is known to within the
same percent. This is an optimal situation; we shall soon see that if A is not
diagonal—more precisely when A−1 has rows of mixed signs—then the situation is
worse.

2.4. Cancellation. The next example involves a fact about cancellation: we easily
check that the sum of two positive numbers known to within 1% is still known to
within 1%, for example

(12± 0.12) + (9± 0.09) = 21± 0.21.

(Technically the expression 9 ± 0.09 refers to the set of x in the closed interval
[8.91, 9.09], i.e., 8.91 ≤ x ≤ 9.09.) However,

(8) (12± 0.12)− (9± 0.09) = 3± 0.21

(since the left-hand-side can be as large as

(12 + 0.12)− (9− 0.09) = 3 + 0.21

and, similarly, as small as 3− 0.21). Hence the difference of two positive quantities
known to within 1% are not generally known to within 1% when the main terms
have opposite signs.

2.5. A Mixed Signs Example.

Example 2.3. We wish to determine all possible values of x = A−1b where

A =

[
1 2
3 4

]
, b =

[
4± 0.04
3± 0.03

]
.

The formula for a 2× 2 inverse gives

A−1 =
1

det(A)

[
4 −2
−3 1

]
=

[
−2 1
3/2 −1/2

]
,

and hence

x = A−1
[
4± 0.04
3± 0.03

]
=

[
−2 1
3/2 −1/2

] [
4± 0.04
3± 0.03

]
=

[
−5± 0.11

9/2± 0.075

]
,

where the −5± 0.11 results from the fact that

(−2)(4± 0.04) + (1)(3± 0.03)

can be as large as

(−2)(4− 0.04) + (1)(3 + 0.03) = −5 + 0.11
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and, similarly, as small as −5− 0.11. Hence

x1 = −5± 0.11, x2 = 9/2± 0.075 = 4.5± 0.075.

Notice that in the above example, x1, x2 are not determined to within 1% because
of the cancellation.

3. Cancellation, Awkwardness and Norms, and Relative Error

In this section we discuss sensivity and cancellation in Rn or Cn for n ≥ 2; in
the previous section we dealt with expressions like 9± 0.09, which is the case of Rn
with n = 1.

The first step to note is that the sets in the previous section, such as

(9)

[
4± 0.04
3± 0.03

]
=

{[
b1
b2

] ∣∣∣∣∣ 3.96 ≤ b1 ≤ 4.04, 2.97 ≤ b2 ≤ 4.03

}
tend to be very awkward to deal with (we’ll explain why soon), and matters are
worse with their analogs in Rn with n large. We can work with such sets, but it
usually simpler—and almost as powerful—to introduce norms (also called lengths
or magnitudes) on Rn or Cn.

3.1. Common Norms and Awkward Norms. We tend to work with the fol-
lowing norms for n-dimensional vectors v = [v1 . . . vn]T :

(1) the most common is the 2-norm (which coincides with and also called the
L2-norm or `2-norm):

‖v‖2
def
=
√
|v1|2 + · · ·+ |vn|2

(writing |v1|2 instead of v21 makes this expression valid for both v ∈ Rn or
v ∈ Cn); we use the 2-norm most often becuase is simplifies computations
and has a nice “geometric interpretation,” even though it is not always the
most relevant norm to our given applications;

(2) the 1-norm

‖v‖1
def
= |v1|+ · · ·+ |vn|;

and
(3) the max-norm or ∞-norm (the textbook [A&G] tends to use ∞-norm)

‖v‖∞ = ‖v‖max
def
= max

(
|v1|, · · · , |vn|

)
.

In any norm ‖ · ‖, the distance between two vectors v and u is the length (or norm)
of v − u, i.e., ‖v − u‖.

Notice that the set in (9) is contained in the set{
b
∣∣ ‖b− [4 3]T ‖∞ ≤ 0.04

}
,

i.e., the elements of ∞-distance at most 0.04 to [4 3]T . Furthermore (9) contains
the set {

b
∣∣ ‖b− [4 3]T ‖∞ ≤ 0.03

}
;

for these reasons (9) is “pretty well” approximated using the ‖ · ‖∞ norm.
One could describe the set in (9) exactly by introducing a weighted ∞-norm,

such as

(10) ‖v‖weird weight
∞

def
= max

(
|v1|, (4/3)|v2|

)
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which gives a 4/3 weight to the v2 component; however, this tends to be rather
awkward to work with—each such set may require a different weignt and therefore
a different norm.

Later in the course (and elsewhere in the literature) we may see examples of
weighted 2-norms where the weights chosen for a good reason (and do not depend
on the particular vector, such as [4 3]T in the case above).

3.2. The Lp-Norm (or `p-Norm or p-Norm). The textbook [A&G], Section 4.2,
defines for any p ≥ 1 the p-norm (also known as the Lp-norm or `p-norm):

‖v‖p =
(
|v1|p + · · ·+ |vn|p

)1/p
.

It also lists some inequalities between the p = 1, 2,∞ norms. Since the ∞-norm is
the simplest to calculate (you look at the largest absolute value of the components),
one often uses the inequality

‖v‖∞ ≤ ‖v‖p ≤ n1/p‖v‖∞,

which is an easy exercise (namely, if the largest absolute value among the compo-
nents of v isM , show that the smallest and largest possible values of |v1|p+· · ·+|vn|p
are, respectively, Mp and nMp).

The more general equality of this type is that if 1 ≤ p ≤ r, then

‖v‖r ≤ ‖v‖p ≤ n1/s‖v‖r,

where s satisfies 1/r + 1/s = 1/p. For p = 1 and r = 2 this yields

‖v‖2 ≤ ‖v‖1 ≤ n1/2‖v‖2,

3.3. Cancellation and the Triangle Inequality. The cancellation in (8) has an
analog for higher dimension. Namely, the analogue of 12± 0.12 would be{

b̂ ∈ Rn
∣∣ ‖b̂− b‖ ≤ 0.12}

where ‖ · ‖ denotes any of the basic norms (i.e., the p-norms with p = 1, 2,∞); the
special case n = 1 and b = 12 is precisely the set 12± 0.12.

The fact that ‖ · ‖p with p = 1, 2,∞ all satisfy the triangle inequality, namely

‖a + b‖p ≤ ‖a‖p + ‖b‖p
and all scale, i.e., ‖βb‖ = |β|‖b‖ for a scalar β, implies that the sum of any element
in {

b̂ ∈ Rn
∣∣ ‖b̂− b‖p ≤ 0.12}

with one in {
â ∈ Rn

∣∣ ‖â− a‖p ≤ 0.09}
must lie in {

ĉ ∈ Rn
∣∣ ‖ĉ− (a + b)‖p ≤ 0.21}

In (8) we have n = 1, b = 12 and a = −9 (subtracting 9 is the same as adding −9),
and so the issue is how much cancellation there is in a + b.

In Rn with n = 1, two vectors are either pointing in the same direction or in
opposite directions. For n ≥ 2, vectors can also point in the same or opposite
directions, but there is a range of angles between 0 and 180 degrees.



CPSC 303: WHAT THE CONDITION NUMBER DOES AND DOES NOT TELL US 9

3.4. Relative Error. The condition number is based on relative error: In the two
equalities,

(7± 0.07) + (5± 0.05) = 12± 0.12 and (7± 0.07) + (−5± 0.05) = 2± 0.12,

the two ±0.12 represent the same absolute error, but a difference is in the relative
error, namely 1% in 12± 0.12 and 6% in 2± 0.12. (See Section 1.2 of [A&G].)

Definition 3.1. Given two vectors, b, b̂ in Rn or Cn, and fixed p ≥ 1 (typically

p = 1, 2,∞), the relative error of b̂ with respect to b in the p-norm, denoted

Relp(b̂,b), is

Relp(b̂,b) =
‖b̂− b‖p
‖b‖p

For n = 1, the relative error does not depend on p; in this case b = [b1] and
‖b‖p = |b1|. For example, regardless of the value of p,

Relp(12.12, 12.00) = (1/100) = 1%,

Relp(12.00, 12.12) = (1/101) = 0.99009900 . . .%,

and

Relp(2.12, 2.00) = (6/100) = 6%,

Relp(2.00, 2.12) = (6/101) = 5.940594 . . .%,

For n ≥ 2, the relative error generally depends on p:

Rel1

([
1.01
1.00

]
,

[
1.00
1.00

])
=

∥∥∥∥∥
[
0.01
0.00

]∥∥∥∥∥
1

/ ∥∥∥∥∥
[
1.00
1.00

]∥∥∥∥∥
1

= 0.01/2 = 0.5%

Rel2

([
1.01
1.00

]
,

[
1.00
1.00

])
=

∥∥∥∥∥
[
0.01
0.00

]∥∥∥∥∥
2

/ ∥∥∥∥∥
[
1.00
1.00

]∥∥∥∥∥
2

= 0.01/
√

2 = 0.7071 . . .%,

Rel∞

([
1.01
1.00

]
,

[
1.00
1.00

])
=

∥∥∥∥∥
[
0.01
0.00

]∥∥∥∥∥
∞

/ ∥∥∥∥∥
[
1.00
1.00

]∥∥∥∥∥
∞

= 0.01/1 = 1%.

Similarly,

Relp

([
1.01
0.01

]
,

[
1.00

0

])
=

∥∥∥∥∥
[
0.01
0.01

]∥∥∥∥∥
p

/ ∥∥∥∥∥
[
1.00
0.00

]∥∥∥∥∥
p

=


2/100 = 2% if p = 1,√

2/100 = 1.41 . . .% if p = 2, and
1/100 = 1% if p =∞.

3.5. Further Remarks on Norms. Roughly speaking, a norm on Rn or Cn (or
on any vector space) is a rule that assigns to each element a non-negative length (or
norm) that

(1) scales, meaning ‖αv‖ = |α| ‖v‖ for any vector, v, in Rn or Cn, and any
scalar, α, in R or C respectively;

(2) satisfies the triangle inequality

‖v + w‖ ≤ ‖v‖+ ‖w‖

for all vectors v,w; and
(3) is non-degenerate, meaning that ‖v‖ = 0 iff v = 0 = (0, . . . , 0).
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For any real p 6= 0 we set

‖v‖p
def
=
(
|v1|p + · · ·+ |vn|p

)1/p
;

however, for 0 < p < 1 this “p-norm” fails to satisfy the triangle inequality, so this
“p-norm” is not truly a norm. We define the L∞-norm or ∞-norm as the limit of
the p-norm when p → ∞, which turns out to be merely the max-norm. The limit
of ‖v‖p for p→ 0 (where the above formula is not a norm) is the geometric-mean(

|v1| |v2| . . . , |vn|
)1/n

(one can easily check this using L’Hôpitals Rule and the fact that (d/dε)aε =
ln(a)aε). The p-norms are useful in theoretical work, but are not as prominent in
practical work.

All these norms can generalized by having different positive weights assigned to
different coordinates, as in (10). In some applications there is a particular set of
weights of importance that weighs some components higher than others.

There are a very large set of possible norms on Rn: in Rn it turns out that for
any closed, convex subset, S, that contains 0 in its interior and is symmetric under
x 7→ −x, there is a unique norm ‖ · ‖ such that S is the set of Rn whose norm is
at most 1 (and the converse is true). This theorem classifies all possible norms on
Rn, and shows that there are a lot of them (think of all the ways of drawing such
an S in R2).

4. The L2-Norm (or 2-Norm) of a Matrix

If A is an n×n matrix over the real or complex numbers, then we define the L2-
norm (or simply the 2-norm) of A, denoted ‖A‖2, can be defined in two equivalent
ways:

(1) the square root of the largest eigenvalue ofA∗A, whereA∗ is the transpose of
A when working over the reals, and, more generally, the conjugate transpose
of A when working over the complex numbers; or, equivalently,

(2) the smallest real number C > 0 such that

‖Av‖2 ≤ C‖v‖2,
for any v ∈ Rn or v ∈ Cn, where ‖ · ‖2 is the usual 2-norm on vectors

‖v‖2
def
=
√
|v1|2 + · · ·+ |vn|2

(writing |v1|2 instead of v21 makes this expression valid for both v ∈ Rn or
v ∈ Cn).

There is no simple formula for the 2-norm of an n × n matrix, A, although
you could write down a (rather unhelpful) formula for n = 2 using the quadratic
equation for the characteristic polynomial of A∗A. However, it is not hard to
approximate ‖A‖2. Here are two simple such approximations:

(1) if M is the maximum absolute value of an entry of an n×n matrix A, then

M ≤ ‖A‖2 ≤ nM ;

(2) if M row
2 is the maximum 2-norm of all rows of an n× n matrix A, then

M row
2 ≤ ‖A|2 ≤

√
nM row

2 ,

and similarly for columns instead of rows.
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It turns out that the second approximation is always at least as good as the first,
since we easily see that M ≤M row

2 ≤
√
nM .

Example 4.1. If

A =

[
6 1
8 1

]
,

then the simplest bound is

8 ≤ ‖A‖2 ≤ 2 · 8 = 16

based on the fact that the maximum entry of A is 8. The largest 2-norm of a row
of A is √

82 + 12 =
√

65,

and hence
√

65 ≤ ‖A‖2 ≤
√

2
√

65.

Also, the largest 2-norm of a column of A is√
62 + 82 = 10,

and so

10 ≤ ‖A‖2 ≤ 10
√

2.

Combining the row and column estimates we get

10 ≤ ‖A‖2 ≤
√

2
√

65 ≈ 11.4

The exact value of ‖A‖ is the square root of largest eigenvalue of

A∗A =

[
6 8
1 1

] [
6 1
8 1

]
=

[
100 14
14 2

]
which is given by solving

det

[
100− λ 14

14 2− λ

]
= 0

which gives ‖A‖ =
√

101.9607 . . . = 10.0975 . . .

Example 4.2. If A is a diagonal n× n matrix, i.e.,

A =


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn


then there is a simple formula for ‖A‖2, namely

(11) ‖A‖2 = max
(
|d1|, . . . , |dn|

)
.
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5. The Lp-Norm (or p-Norm) of a Matrix

More generally, for any value of p ≥ 1, we define the p-norm (or Lp-norm) of an
n× n matrix, A, denoted by ‖A‖p, as the smallest real C > 0 for which

‖Av‖p ≤ C‖v‖p
for all v ∈ Rn or Cn. Hence ‖A‖p is the maximum amount the p-norm of any
vector is “stretched” in this norm. One can equivalently write

‖A‖p = max
v 6=0

‖Av‖p
‖v‖p

(the fact that we write “max” and not “sup” is a bit subtle).
Similarly, if ‖ · ‖ is any norm (see Subsection 3.5) on Rn or Cn, then there is a

corresponding norm on n× n matrices A given as the smallest real number C > 0
such that

‖Av‖ ≤ C‖v‖,
for any v ∈ Rn or v ∈ Cn.

If A happens to be a diagonal matrix with diagonal entries d1, . . . , dn, then for
any p ≥ 1

(12) ‖A‖p = max
(
|d1|, . . . , |dn|

)
.

which is the analog of (11).
The easy upper and lower bounds on ‖A‖p, valid for any p ≥ 1, are somewhat

curious: the maximum entry bound is the same, but the row and column bounds
involve the unique q ≥ 1 such that (1/p) + (1/q) = 1; this q is often called the
conjugate of p in this context; for example p = 2 gives q = 2 so 2 is its own
conjugate, and p = 1 gives q =∞, and vice versa, so 1 and∞ are conjugates. Here
are the bounds:

(1) if M is the maximum absolute value of an entry of an n×n matrix A, then

M ≤ ‖A‖p ≤ nM ;

(2) if M col
p is the maximum p-norm among all columns of an n × n matrix A,

then

M col
p ≤ ‖A‖p ≤ n1/qM col

p ,

and this is always at least as good as M ≤ ‖A‖2 ≤ nM in view of the
inequality M ≤M col

p ≤ n1/pM ;
(3) if M row

q is the maximum q-norm among all columns of an n× n matrix A,
then

M row
q ≤ ‖A‖p ≤ n1/pM row

q ,

and this is always at least as good as M ≤ ‖A‖2 ≤ nM in view of the
inequality M ≤M row

q ≤ n1/qM .

Since p = 1 and q =∞ are conjugates, i.e., (1/p)+(1/q) = 1, and since n1/∞ = 1
(to see this rigorously we should really take a limit of p, q > 1 and p → 1 which
takes q →∞, but we soon get used to what q =∞ should mean) we have

(13) ‖A‖∞ = Arow
1 , ‖A‖1 = Acol

1 .

Hence it is generally easier to calculate ‖A‖p exactly for p = 1,∞ than for p = 2.
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6. Some 2× 2 Matrix Norm Formulas

To make formulas like (13) concrete, it is helpful to look at the n = 2 case,

A =

[
a b
c d

]
where a, b, c, d are real or complex numbers. In this case

‖A‖∞ = max(|a|+ |b|, |c|+ |d|), ‖A‖1 = max(|a|+ |c|, |b|+ |d|).

It is not hard to prove these when you consider that

‖A‖p
def
= max

v 6=0

‖Av‖p
‖v‖p

= max
‖v‖p=1

‖Av‖p = max
‖v‖p≤1

‖Av‖p

(the equality in the middle follows from the fact that if v 6= 0, then one can scale
v to make it a unit vector). [The proofs may appear in the exercises in the final
draft of this article.]

Determining ‖A‖2 is generally much more difficult: when A has real entries we
have

A∗A =

[
a2 + c2 ab+ cd
ab+ cd b2 + d2

]
Then ‖A‖2 is the square root of the largest eigenvalue of the above matrix; the
above matrix is of the form [

α β
β γ

]
which leads us to solve

det

[
α− λ β
β γ − λ

]
= 0

which gives the quadratic equation

(α− λ)(γ − λ)− β2 = 0

There is one special case where the above formula is simple, namely when γ = α,
and we find λ = α ± β; this special case occurs for A∗A iff a2 + c2 = b2 + d2;
however, if α 6= γ we do not know a particularly nice formula.

To approximate ‖A‖2 one can use the inequality

M ≤ ‖A‖p ≤ 2M, where M = max
(
|a|, |b|, |c|, |d|),

which is valid for any p ≥ 1. There are two sharper inequalities, namely

M row
2 ≤ ‖A|2 ≤

√
2M row

2 ,

where

M row
2 = max

(√
a2 + b2,

√
c2 + d2

)
,

and

M col
2 ≤ ‖A|2 ≤

√
2M col

2 ,

where

M col
2 = max

(√
a2 + c2,

√
b2 + d2

)
.
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7. The (L2- and) Lp-Condition Number of a Matrix

If A is an n× n matrix, over R or C as usual, and p ≥ 1, then the Lp-conditiion
number of A is defined whenever A is invertible, and either of the equivalent real
numbers (which is always at least as large as 1):

(1)

condp(A) = ‖A‖p
∥∥A−1∥∥

p
,

or equivalently,

(2) the smallest real C > 0 such that for all b, b̂ we have

Relp(A
−1b̂, A−1b) ≤ C Relp(b̂,b)

(3) the smallest real C > 0 such that for all b, b̂ we have

Relp(x̂,x) ≤ C Relp(b̂,b), where x̂ = A−1b̂, x = A−1b.

(4) the smallest real C > 0 such that for all b, b̂ we have

Relp(x̂,x) ≤ C Relp(b̂,b), where Ax̂ = b̂, Ax = b.

Of course, these last three formulations of the condition number are simple rewrit-
ings of one another; the last formulation is the most suggestive of our definition of
the doubly-normed condition number that we describe in Section 9. The equivalence
of the first formulation with the last three is given in the exercises.

Let us remark that condp(A) ≥ 1, and there are two simple reasons why this is
true (for any norm, including all p-norms with p ≥ 1):

(1) for any vector b, the relative error of (1.01)b and b (in this order, since the
order matters) is 1%, in any norm (including all the p-norms for p ≥ 1). So

setting b̂ = (1.01)b we have

Relp(b̂,b) = 1%.

But since A−1b̂ = A−1((1.01)b) = (1.01)A−1b, we have

Relp(A
−1b̂, A−1b) = Relp

(
(1.01)A−1b, A−1b) = 1%.

Hence if the relative error in b is 1%, you cannot do better than a relative
error of 1% in x = A−1b.

(2) Another proof that condp(A) ≥ 1 for any p ≥ 1 follows from the inequality

‖AB‖p ≤ ‖A‖p ‖B‖p

that can be proven by noting that for any v,

‖(AB)v‖p ≤ ‖A(Bv)‖p ≤ ‖A‖p‖Bv‖p ≤ ‖A‖p ‖B‖p‖v‖p.

Setting B = A−1 in the above inequality, we have

condp = ‖A‖p ‖A−1‖p ≥ ‖AA−1‖p = ‖I‖p

where I is the identity matrix, whose norm is easily checked to equal 1
(since Iv = v for all v and/or since I is a diagnoal matrix whose entries
are all 1’s).
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Notice that we are using p-norms and p-condition numbers, but these proofs hold
for any norm on Rn or Cn (see Subsection 3.5), which give rise to a norm on
n×n matrices, A (measuring by how much A stretches the norm), and therefore to
condition numbers (either defined by the loss of relative error in solving Ax = b,
or as simply ‖A‖ ‖A−1‖.

Section 5.8 of the textbook [A&G] discusses condition numbers at length; typi-
cally one sees the values of p = 1, 2,∞ for condition numbers, but this can vary.

Whenever A is a diagonal matrix with diagonal entries d1, . . . , dn, we have that
A−1 is the diagonal matrix with diagonal entries 1/d1, . . . , 1/dn, and

(14) condp(A) =
max

(
|d1|, . . . , |dn|

)
min

(
|d1|, . . . , |dn|

)
for any p ≥ 1. Furthermore, the bounds M ≤ ‖A‖p ≤Mn, where M is the largest
absolute value of the entries of A (valid for any n× n matrix, A, and any p) imply
that

(15) MM ′ ≤ condp(A) ≤ n2MM ′

where M ′ is the largest absolute value of the entries of A−1. This is a crude bound,
but sufficient in studying interpolation when n is (small and) fixed, and we have a
degeneracy like x1 = x0 + ε and we consider ε→ 0.

8. Interpolation: What The Condition Number Does and Does Not
Tell Us

At this point we will compute the condition numbers of the matrices in Sec-
tion 1 and understand why equivalent linear systems can have drastically different
condition numbers.

8.1. Formulas for the Inverse. It will be useful to recall the formula

A =

[
a b
c d

]
⇒ A−1 =

1

ad− bc

[
d −b
−c a

]
.

It will also be helpful to see that if

M = max
(
|a|, |b|, |c|, |d|

)
(i.e., the largest absolute value among the entries of A), then the largest absolute
value among the entries of A−1 is just

M ′ = M/
∣∣ad− bc∣∣ = M/

∣∣det(A)
∣∣

This should affirm our intuition that if, roughly speaking, det(A) is “very small”
compared to M , then A−1 will have “very large” entries compared to those of A.

Notice that the generalization of such formulas to n× n matrices with n ≥ 3 is
not as simple: the general formula is

A−1 =
1

det(A)
adjugate(A),

where the adjugate of A is formed by the determinants of the (n − 1) × (n − 1)
minors of A, placed in the appropriate positions and given appropriate signs (i.e.,
±1).

Fortunately, we can get a lot of intuition about condition numbers and “degen-
erate” interpolation from the case of n = 2 and the tangent line.
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8.2. The 2× 2 Interpolation for a Tangent Line.

Example 8.1. Let A be the matrix in (1), namely

A =

[
1 2
1 2 + ε

]
Then

A−1 =
1

ε

[
2 + ε −2
−1 1

]
Hence the largest entries of A and A−1 are respectively

M = M(A) = 2 + ε, M ′ = M ′(A) = (1/ε)(2 + ε),

and hence

MM ′ = (1/ε)(2 + ε)2.

To simplify this expression, notice that when ε→ 0 we have

MM ′ = 4/ε+ 4 + ε = 4/ε+O(1),

where O(1) refers to a term bounded by 1 times some constant when ε is sufficiently
small (you can take any constant strictly greater than 4, such as 5 or 4.000001).
You could also write

MM ′ = 4/ε+ 4 +O(ε)

which is more precise than 4/ε + O(1), but for now let’s just look at the simpler
expression 4/ε+O(1).

It follows from (15) that

MM ′ ≤ condp(A) ≤ 22MM ′

(which is valid for all p ≥ 1!), and so

4/ε+O(1) ≤ condp(A) ≤ 16/ε+O(1).

It follows that as ε → 0, the condition number of A grows as (meaning within a
multiplicative factor of) 1/ε. In particular, the condp(A) becomes infinite as ε→ 0.

Example 8.2. Let A be the matrix in (2), namely

A =

[
1 2
0 ε

]
Here det(A) = 1/ε just like in the example above, and M = M(A) = 2 (exactly).
Since this M is also equal to 2 + O(ε), which is all that we needed above, we get
the condition number of A again grows like 1/ε.

Example 8.3. Let A be the matrix in (3), namely

A =

[
1 2
0 1

]
Then

A−1 =

[
1 −2
0 1

]
,

and hence M(A) = M ′(A) = 2. Hence for all p ≥ 1, (15) implies that

4 ≤ condp(A) ≤ 16.
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Here is one way to understand the difference between the last example (with a
bounded condition number as ε → 0) and the first two examples: the condition
number is the smallest C such that

Relp(A
−1b̂, A−1b) ≤ C Relp(b̂,b)

When x0 = 2 and x1 = 2 + ε, and yi = f(xi) for i = 1, 2, then the constants of the
equation in (3) are[

y0
(y1 − y0)/ε

]
=

[
f(2)(

f(2 + ε)− f(2)
)
/ε

]
≈
[
f(2)
f ′(2)

]
So when we expect a small relative error in

b =

[
y0

(y1 − y0)/ε

]
we get a bounded C. On the other hand, the relative error of[

y0
y1

]
≈
[

f(2)
f(2) + εf ′(2)

]
≈
[
f(2)
f(2)

]
is of percentage 1% (for example), then you are fitting a line to the two points(

2, f(2)± f(2)/100
)
,
(
2 + ε, f(2) +O(ε)± f(2)/100

)
.

In this case the ±f(2)/100 dominates O(ε) for small ε (if f(2) 6= 0), and for ε small
you cannot confidently know even if the slope you get for the interpolating line is
positive or negative.

In the next section we describe how to rectify this problem in a conceptually
simpler way.

8.3. A 3× 3, Doubly Degenerate Example. We remark that in the 2× 2 cases
above, looking at M and det(A) tells us the whole story. This is not true of 3× 3
systems.

Example 8.4. Let A be the matrix in (6), namely

A =

1 2 4
0 ε 4ε+ ε2

0 0 2ε2

 .
Since A is upper triangular, det(A) is simply the product of its diagonal entries,
and so

det(A) = 1 · ε · 2ε2 = 2ε3;

however, the condition number grows only like 1/ε2, not 1/ε3: to see this we can

(1) compute A−1 (not necessarily the easiest way);
(2) look at how each entry of the adjugate grows (i.e., look at how the deter-

minant of each 2× 2 minor of A—obtained by crossing off one row and one
column—grows).

The adjugate method works as follows: crossing off the bottom row of A gives[
1 2 4
0 ε 4ε+ ε2

]
and we see that all determinants formed by crossing out one column grow like ε;
crossing out any other row leaves at least one row whose entries grow like ε or ε2,
we see that largest entry of the adjugate grows like ε. Hence M ′ grows like det(A)
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times ε, which grows like 1/ε2. Hence, in rough terms, MM ′ grows like 1/ε2, and
hence so does condp(A) for any p ≥ 1.

Alternatively, an exact computation of A−1 shows that

A−1 =

1 −2/ε 2/ε2 + 1/ε
0 1/ε −2/ε2 + (1/2)(1/ε)
0 0 (1/2)(1/ε2)


(at least, this is what the software Maple gives as the inverse. . .), showing that
M ′ = 2/ε2 +O(1/ε) as ε→ 0.

9. The Doubly-Normed Condition Number

One way to understand all the interpolation examples that we have given is that
when we write Ax = b, and then the condp(A) (for some p ≥ 1) is the smallest C
such that

Relp(x̂,x) ≤ C Relp(b̂,b), where Ax̂ = b̂, Ax = b.

Although x̂,x and b̂,b both refer to n-dimensional vectors, sometimes we want to
one norm on the x vectors and one on the b vectors. Hence it can be better to
define the condition number, cond(A), as the smallest C such that

Reldom(x̂,x) ≤ C Relrange(b̂,b), where Ax̂ = b̂, Ax = b,

where we have two norms, ‖x‖dom, ‖b‖range, one appropriate for vectors in the
domain of A (viewed as a map), and another one appropriate for vectors in the
range (i.e., codomain) of A and the relative errors are measured in these two norms,
i.e.,

Reldom(x̂,x) =

∥∥x̂− x
∥∥
dom∥∥x∥∥

dom

and similarly for Relrange.
In the above sitation one can prove that the condition number is also given by

the formula:

‖A‖ ‖A−1‖
where the norms are computed with respect to the two norms, i.e.,

‖A‖ = max
x 6=0

‖Ax‖range
‖x‖dom

= max
‖x‖dom=1

‖Ax‖range,

‖A−1‖ = max
b6=0

‖Ab‖dom
‖b‖range

= max
‖b‖range=1

‖Ab‖dom.

The point is that merely because the domain and range consist of n-dimensional
vectors, we do not necessarily want to measure their “magnitude” or “length”
(regarding errors in their measurements, or perturbations) in the same way. So if
b = (y0, y1) are measured with the same relative error, then any of the usual `p-
norms (or p-norms) may be appropriate. In this case the condition number tends
to infinity as ε→ 0 for x1 = x0 + ε and x0 = 2 (or any fixed value).

On the other hand, if we are working with information on f(2) and f ′(2), the
more appropriate norm is the one where y0, y1 are obtained as

y0 = b1, y1 = b1 + εb2
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with b1, b2 representing the values of f(2), f ′(2) with some small relative errors in
these values. Hence the appropriate norm would be∥∥(b1, b2)

∥∥
p

for some p, which equals ∥∥∥(y0, (y1 − y0)/ε
)∥∥∥
p

For example, for p =∞ we get the norm

max
(
|y0|, |y1 − y0|/ε

)
.

Another way of seeing the problem with the condition number is that the set of
(y0, y1) that are of a given magnitude in a p-norm is a larger set than those such
that (y0, (y1 − y0)/ε) are of a given p-norm (for ε “very small”). So although the

condition number refers to the worst case over all b̂,b (see the formulas at the
beginning of Section 7), in the “degenerate interpolation” we are only interested in
a small subset of them (which we measure differently).

A more general principle is that the condition number speaks of the worst case,
whereas a specific application may involve cases that are not so bad; the diagonal
Example 2.2 is a good example: its condition number is 107/3, whereas there is no
loss in the relative error in the solution (i.e., in x) over those in the constants (i.e.,
b).

In this way, the doubly-normed condition number gives us a better overall un-
derstanding of the situtation:

(1) as always, condp(A), is a way of indicating possible problems with the sys-

tem Ax = b, although it is giving the worst case b, b̂;
(2) when there are more appropriate norms of the domain and range of A, you

get a better idea of the worst case situation of relative error (or perturba-
tion) in exact arithmetic;

(3) if your domain and/or range norms are not closely related to the usual
p-norms, for numerical computations you should write an equivalent linear
systems where the domain and range norms are comparable with the usual
p-norms (which will change the condition number); and

(4) [something we haven’t mentioned yet, but is related to the above remarks:]

if you are only interested in a limited set of cases of b, b̂, any condition
number may be unduly pessimistic and not particularly appropriate.

Furthmore—as we have vaguely mentioned—for some applications there is a natural
different norm, such as a weighted p-norm, e.g.,

‖v‖p =
(
|v1|pw1 + · · ·+ |vn|pwp

)1/p
for some real w1, . . . , wp, generally positive but not the same. Also, for some
applications there may be no single norm that actually describes what you want to
study.

Exercises

(1) Use the formulas in Section 6 to find the 1-norm, 2-norm, and ∞-norm of
the matrix

A =

[
3 4
4 3

]
.
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(2) Use the formulas in Section 6 to find the 1-norm, 2-norm, and ∞-norm of
any matrix of the form

A =

[
a b
b a

]
.

[Hint: it turns out that these norms are all the same, and equal to |a|+ |b|.]
(3) Use the formula in Exercise 2 to find the 1-norm, 2-norm, and∞-condition

number of the matrix

A =

[
3 4
4 3

]
.

(4) Consider the system in Example 2.2: Ax = b with

A =

[
107 0
0 3

]
.

Show your work in the following calculations:
(a) If b = [1 0]T , what is x = A−1b?

(b) Let y ∈ R be any number. If b̂ = [1 y]T , what is x̂ = A−1b̂?

(c) Show that the relative error between b̂ and b (see Definition 3.1) is

Rel∞(b̂,b) = |y|.
(d) Show that

Rel∞(x̂,x) = |y|107/3.

(e) How does the ratio of the relative errors in the previous two parts
relate to the ∞-condition number of A?

(f) Show that

Rel∞(b, b̂) =
|y|

max(1, |y|)
(g) Show that

Rel∞(x, x̂) =
|y|/3

max(10−7, |y|/3)

(h) Compute the ratio of the relative errors in the previous two parts for
the four values y = 10, 1, 10−1, 10−8; how do these values relate to the
∞-condition number of A?

(5) Let v = (v1, . . . , vn) ∈ Rn, and let M = ‖v‖∞, i.e.,

M = max
(
|v1|, . . . , |vn|

)
.

Let p be any real number with p 6= 0.
(a) In at most 20 words, explain why

Mp ≤ |v1|p + · · ·+ |vn|p.
(b) In at most 20 words, explain why

|v1|p + · · ·+ |vn|p ≤Mpn.

(c) In at most 20 words plus one or two formulas, using parts (a)
and (b), explain why

‖v‖∞ ≤ ‖v‖p ≤ n1/p‖v‖∞.
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(6) Let v = (v1, . . . , vn) ∈ Rn, and let 1 denote the vector (1, 1, . . . , 1) ∈ Rn.
Let x ∈ R be a variable.
(a) Write an expression for

f(x)
def
= ‖v − x1‖22

as a polynomial of degree 2 in x: what are the coefficients of this
polynomial?

(b) Differentiate the above expression in x to determine for which x we
have f ′(x) = 0.

(c) In at most 20 words, explain why the x for which f ′(x) = 0 is a
(global) minimum for x.

(7) Let v = (v1, . . . , vn) ∈ Rn such that

v1 ≤ v2 ≤ . . . ≤ vn,
and let 1 denote the vector (1, 1, . . . , 1) ∈ Rn. Let x ∈ R be a variable. Let
vmiddle = (v1 + vn)/2, and r = (vn − v1).
(a) In at most 20 words plus one or two formulas, show that if

x < vmiddle, then

|x− vn| > r/2.

(b) In at most 20 words plus one or two formulas, show that if
x > vmiddle, then

|x− v1| > r/2.

(c) In at most 20 words plus one or two formulas, show that if
x = vmiddle, then

|x− v1| = |x− vn| = r/2

(d) In at most 20 words plus one or two formulas, find the value of
x ∈ R at which

f(x) = ‖v − x1‖∞
attains its minimum.

(8) Let n ≥ 3 be an odd integer. Let nmid = (n+ 1)/2. Let v = (v1, . . . , vn) ∈
Rn such that

v1 ≤ v2 ≤ . . . ≤ vn,
and let 1 denote the vector (1, 1, . . . , 1) ∈ Rn. Let x ∈ R be a variable.
(a) In at most 30 words plus one to three formulas, show that if

for some integer i ≤ nmid − 1 we have vi ≤ x < vi+1, then if x′ = vi+1

we have
‖v − x′1‖∞ < ‖v − x1‖∞.

[Hint: It may be helpful to first consider a special case, such as n = 5,
nmid = 3. In this case either v1 ≤ x < v2 or v2 ≤ x < v3.]

(b) In at most 30 words plus one to three formulas, show that if
x < v1 and x′ = v1, then

‖v − x′1‖∞ < ‖v − x1‖∞.
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(c) In at most 20 words, use the previous two parts to show that if
xmedian = vnmid

and x < xmedian, then

‖v − xmedian1‖∞ < ‖v − x1‖∞.
(d) Show that if x > xmedian, then

‖v − xmedian1‖∞ < ‖v − x1‖∞.

(9) Let n ≥ 2 be an even integer. Let v = (v1, . . . , vn) ∈ Rn such that

v1 ≤ v2 ≤ . . . ≤ vn,
and let 1 denote the vector (1, 1, . . . , 1) ∈ Rn. At which values of x ∈ R
does

f(x) = ‖v − x1‖∞
attain its minimum values? Explain you answer by modifying the argument
in the previous problem (where n is odd).

(10) Let A be an n× n matrix with real entries, and let b̂,b ∈ Rn with b̂ 6= b.
For any p ≥ 1, show that

‖A−1b̂−A−1b‖p
‖b̂− b‖p

‖b‖p
‖A−1b‖p

≤ ‖A−1‖p‖A‖p.

Then use this to show that

Relp(A
−1b̂, A−1b) ≤ C Relp(b̂,b)

where C = ‖A−1‖p‖A‖p.

(11) Let A be an n× n real matrix, p ≥ 1, and b1,b2 satisfy

‖Ab1‖p
‖b1‖p

= ‖A‖p,
‖A−1b2‖p
‖b2‖p

= ‖A−1‖p.

Show that

lim
ε→0

Relp(A
−1(Ab1 + εb2), A−1(Ab))

Relp(Ab1 + εb2, Ab1)
= ‖A−1‖p‖A‖p.

Then show that if

Relp(A
−1b̂, A−1b) ≤ C Relp(b̂,b)

for all b̂ 6= b, then C ≥ ‖A−1‖p‖A‖p.

(12) Show that for any n× n matirx A (over R or C) and any p ≥ 1:
(a)

max
v 6=0

‖Av‖p
‖v‖p

= max
‖v‖p=1

‖Av‖p,

and
(b)

max
‖v‖p=1

‖Av‖p = max
‖v‖p≤1

‖Av‖p.
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