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Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 303: use this material
at your own risk. . .

The goal of this article is to review some basic notions from calculus that we will
use in CPCS 303, and to present part of the material that is representative of the
level of difficulty of this course.

[The usual first few weeks of CPSC 303 tend to be misleadingly easy.]
One of the two main goals of CPSC 303 is the study of differential equations,

and much of the emphasis will be on ODE’s (Ordinary Differential Equations). In
this article we will give an introduction to ODE’s, and mention PDE’s.

The other main goal is to study curve fitting with polynomials or piecewise
polynomials, which involves Taylor’s theorem and—at times—some “variational
calculus.” Hence we review the ideas we will need.

Throughout this article, [A&G] refers to the course textbook by Ascher and
Greif. We tend to use the same notation in [A&G].

The UBC Mathematics Department has calculus textbooks publicly available at:
https://personal.math.ubc.ca/~CLP/.

1. Preliminary Ideas from [A&G]

Most of the preliminary ideas we discuss here are based on Section 1.2 of [A&G].
We also briefly mention `p-norms of Section 4.2 and numerical differentiation of
Section 14.1. We will also introduce some common notation.

All the above will be used throughout this course.

1.1. Relative and Absolute Error. If u ∈ R is approximated by v ∈ R, then
the absolute error in v (as an approximation of u) is |u− v|, and the relative error
is |u− v|/|u|.

The same definition holds for u,v ∈ Rn and the `p-norm on Rn. (The textbook
[A&G] uses the notation `p-norm, but `p is far more common in the literature.) If
x = (x1, . . . , xn) ∈ Rn, Section 4.2, page 74 of [A&G] defines

‖x‖1
def
= |x1|+ · · ·+ |xn|,

‖x‖2
def
=
√
x21 + · · ·+ x2n,

‖x‖∞
def
= max

1≤i≤n
|xi|.

More generally, for any 1 ≤ p < ∞ one defines the `p-norm (sometimes `p-norm)
of x ∈ Rn as

‖x‖p
def
=
(
|x1|p + · · ·+ |xn|p

)1/p
,

which generalizes the `1-norm and `2 norm above, and one also sees that for any
x, as p→∞ we have ‖x‖p → ‖x‖∞.

https://personal.math.ubc.ca/~CLP/
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Hence if u ∈ Rn is approximated by v ∈ Rn, and 1 ≤ p ≤ ∞, then the absolute
`p-error in v (as an approximation of u is ‖u − v‖p, and the relative error `p is
‖u− v‖p/‖u‖p.

The `p-norm will be needed when we discuss condition numbers of matrices.
Note that for x ∈ R = Rn with n = 1, ‖x‖p = |x| for any p; hence the `p-norm
generalizes the usual absolute value.

1.2. Taylor’s Theorem. In Chapter 1 of [A&G], page 5, Taylor’s Theorem is
written as: follows: assume k ∈ N = {1, 2, . . .}, f : (a, b)→ R has k+ 1 derivatives,
and x0, h ∈ R with x0, x0 + h ∈ (a, b); then there exists a ξ between x0 and x0 + h
such that

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) + · · ·+ hk

k!
f (k)(x0) +

hk+1

(k + 1)!
f (k+1)(ξ)

(moreover, if h 6= 0 then one can find a ξ strictly bewteen x0 and x0 + h).
A consequence of this theorem is Taylor series: say that for f, a, b, x0, h as above,

and all k ∈ N, there is an M ∈ R such that |f (k)(ξ) ≤ k!Mk. Then for each h ∈ R
with h < 1/M and all x0 ∈ R with x0, x0 + h ∈ (a, b), we have

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) + · · ·+ hk

k!
f (k)(x0) + · · ·

which is called the Taylor series of f at x0.

Example 1.1. For example, let f(x) = ex. Then we have

f ′(x) = f ′′(x) = . . . = ex,

and hence for x0 = 0, for any h we have

f(0 + h) = f(0) + hf ′(0) +
h2

2
f ′′(0) + · · ·+ hk

k!
f (k)(0) +

hk+1

(k + 1)!
f (k+1)ξ

= 1 + h+
h2

2
+ · · ·+ hk

k!
+

hk+1

(k + 1)!
eξ,

for some ξ between x0 = 0 and x0 + h = h. So for h fixed, eξ ≤ e|h| (note that h
can be negative), and

hk+1

(k + 1)!
eξ ≤ e|h| hk+1

(k + 1)!
= e|h|

h

1

h

2
· · · h

k + 1
.

In particular, if h 6= 0 and we fix a K ≥ 2/h, say K = d2/he (the “ceiling function”),
we have h/K ≤ 1/2, and therefore

e|h|
h

1

h

2
· · · h

k + 1
=

(
e|h|

h

1
· · · h

K − 1

)
h

K
. . .

h

k + 1
≤
(
e|h|

h

1
· · · h

K − 1

)
(1/2)k+1−K+1

which tends to 0 as k →∞ for any h 6= 0. Hence

eh = 1 + h+
h2

2
+
h3

3!
+ . . .

is valid for all h. Since it is valid for any h ∈ R, we tend to write this equation as

ex = 1 + x+
x2

2
+
x3

3!
+ . . .

(since in this course h is usually a small number, and x is usually a real variable).
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Remark 1.2. Another way to see that the above Taylor series converges is to
use Stirling’s approximation that n! ∼ (n/e)n

√
2πn1 Hence, for any f and x0, the

Taylor expansion for f(x0 + h) at x = x0 converges for all h with |h| ≤ h0 for any
h0 such that

hk0

(k/e)k
√

2πk
max

|ξ−x0|≤h0

∣∣f (k)(ξ)∣∣
tends to 0 as k →∞.

Similarly, we have

sin(x) = x− x3

3!
+
x5

5!
− . . . , cos(x) = 1− x2

2!
+
x4

4!
− . . . .

Both of these can also be derived from the expansion for ex, using the fact that if
z ∈ C, then one has the well-known equality in complex variables

eiz = cos(z) + i sin(z).

Remark 1.3. The function R→ R given by

f(x) =

{
e−1/x

2

if x 6= 0, and
0 if x = 0

is infinitly differentiable and satisfies f(0) = f ′(0) = f ′′(0) = . . . = 0. However
f(h) 6= 0 for h 6= 0. Hence this f does not have a Taylor series at x0 = 0.

2. First Derivative Approximation

Section 14.1 of [A&G] uses Taylor’s theorem to prove two basic ways to approx-
imate the derivative.

A consequence of Taylor’s theorem is that if f : (a, b)→ R is a twice differentiable
function, then for any x0, h ∈ R with x0, x0 + h ∈ (a, b) and h 6= 0 we have

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(ξ)

for some ξ strictly between x0 and x0 + h. Hence

f(x0 + h)− f(x0)

h
= f ′(x0) +

h

2
f ′′(ξ).

We also write the above as

f(x0 + h)− f(x0)

h
= f ′(x0) +O(h),

where O(h) means “order h,” which is explained in Section 1.2, page 7 of [A&G];
more formally, O(h) denotes any function of h and other parameters that is bounded
by C|h| for a constant C (independent of h and all other variable parameters), for
h sufficiently small.

In more detail, say that for some M2 ∈ R we have |f ′′(x)| ≤M2 for all x ∈ (a, b);
then ∣∣∣∣f(x0 + h)− f(x0)

h
− f ′(x0)

∣∣∣∣ ≤ (M2/2)h

for |h| sufficiently near 0.

1 We write f(n) ∼ g(n), to mean that as n tends to ∞, f(n)/g(n) tends to 1.
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This should not be surprising; indeed, even if f has only one derivative in (a, b),
then

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

Note that numerically, things are a bit different, due to finite precision (this will
be covered in greater detail later). Indeed, Section 1.2 of [A&G], pages 7 and 8,
warns you that although

g(h)
def
=

∣∣∣∣cos(1.2)− sin(1.2 + h)− sin(1.2)

h

∣∣∣∣ h→0−−−→ 0,

the MATLAB computed value of g(h) for h = 10−n with n ∈ N decreases in n for
n ≤ 8 but increases for n ≥ 8.

Note, however that if f is three times differentiable, then

f(x0 + h)− f(x0 − h)

2h
= f ′(x0) +

h2

6
f ′′′(ξ)

for some ξ between x0±h (see [A&G], Subsection 14.1.2 (“Three Point Formulas”,
centred formula), page 411. Hence∣∣∣∣f(x0 + h)− f(x0 − h)

2h
− f ′(x0)

∣∣∣∣ ≤ (M3/6)h2,

where M3 is a bound on |f ′′′| in the interval x0 ± h. More succinctly we may write

f ′(x0) =
f(x0 + h)− f(x0 − h)

2h
± M3h

2

6
.

Similarly, we sometimes need the non-centred formula (same page 411, [A&G])

f ′(x0) =
−3f(x0) + 4f(x0 + h)− f(x0 + 2h)

2h
± M3h

2

3
,

where M3 is a bound on |f ′′′| in the interval between x0 and x0 + 2h.

Remark 2.1. A bound of the form O(M3h
2) may seem better than one of the form

O(M2h). However, if |f ′′′| is large or does not exist, a bound, M2, on |f ′′| may be
better in practice. [We may WRITE A HOMEWORK PROBLEM regarding this.]

2.1. Designing Derivative Schemes, Via Linear Algebra. Say that we wish
to use the values of f(x0), f(x0 ± h) to design a derivative scheme. Then we can
convert this into a linear algebra problem. Namely we write:

f(x0) = f(x0)

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +O(h3)M3

f(x0 − h) = f(x0)− hf ′(x0) +
h2

2
f ′′(x0) +O(h3)M3

and hence for any constants c−1, c0, c1 ∈ R we have

c−1f(x0 − h) + c0f(x0) + c1f(x0 + h) = f(x0)
(
c−1 + c0 + c1

)
+hf ′(x0)

(
−c−1 + c1

)
+(h2/2)f ′′(x0)

(
c−1 + c1

)
+O(h3)
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(where the O(h3) depends on c1, c0, c−1 and a bound (M3) on f ′′′(x) in the relevant
interval). So if we want a formula for hf ′(x0) that is valid to within O(h3), we solve
the system

c−1 + c0 + c1 = 0, −c−1 + c1 = 1, c−1 + c1 = 0.

This system has a unique solution c1 = 1/2, c0 = 0, and c−1 = −1/2, which, upon
dividing the system above by h yields

(−1/2)f(x0 − h) + (0)f(x0) + (1/2)f(x0 + h)

h
= f ′(x0) +O(h2),

which is the centred “three-point” formula at the top of page 411, Subsection 14.1.2,
of [A&G] (we don’t actually use the “middle point” f(x0), since c0 = 0).

3. Some Useful Notation

Throughout this course, we use the following notation: for a, b ∈ R with a < b,

(1) (a, b) is the (open) interval {x ∈ R | a < x < b};
(2) [a, b] is the (closed) interval {x ∈ R | a ≤ x ≤ b};
(3) C[a, b] is the set of f : [a, b]→ R that are continuous on [a, b];
(4) C(a, b) is defined similarly;
(5) for k ∈ N = {1, 2, . . .}, Ck[a, b] denotes the set of functions [a, b]→ R that

are k times continuously differentiable on [a, b] (for the endpoints a, b we
take the derivative only from one side);

(6) Ck(a, b) is defined similarly;
(7) Cω(a, b) is the set of (real) analytic functions f : (a, b)→ R, i.e., such that

for each x0 ∈ (a, b), for |h| sufficiently small, the Taylor series for f(x0 +h)
converges and equals f(x0 + h), i.e.,

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) + · · ·

and the right-hand-side converges for |h| sufficiently small.

4. ODE’s (Ordinary Differential Equations)

ODE’s (Ordinary Differential Equations) are studied in Chapter 16 of [A&G].

4.1. Notation in [A&G]: Univariate ODE’s. For a single variable ODE, they
use the notation (Section 16.1, page 481)

y′ =
dy

dt
= f(t, y), a ≤ t ≤ b,

and one wishes to determine all solutions f : (a, b)→ R to this differential equation.
Since y = y(t) depends on t (where in dynamics t often denotes “time”), the above
equation really reads

y′(t) = f
(
t, y(t)

)
.

The initial value problem imposes the condition

y(a) = c

for some a, c ∈ R, and one seeks a (hopefully unique) solution f : (a, b) → R for
some real b > a. Outside of numerical analysis it is far more common to write

y(t0) = y0,
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where t0 (or a above) represents the initial time, and y0 (or c above) is the initial
value of y = y(t). The reason that [A&G] uses a instead of t0 is the common theme
in their textbook, including the chapters on polynomial interpolation, splines, and
integration, where the interval of interest is [a, b] ⊂ R.

One also commonly uses the abbreviation ẏ for y′ or dy/dt, especially in celestial
mechanics.

We also remark that the condition y(a) = c or y(t0) = y0 often determines a
unique solution y = y(t) defined for all t < t0 with t sufficiently close to t (and
sometimes all real t < t0).

4.2. Notation in [A&G]: Multivariate (or m-dimensional) ODE’s. For a
“system of m ODE’s,” with m ∈ N, [A&G] use the notation

y′ =
dy

dt
= f(t,y), a ≤ t ≤ b,

where y : (a, b)→ Rm; the above is really shorthand for the equation

y′(t) = f
(
t,y(t)

)
, a ≤ t ≤ b;

the initial value problem refers to finding a y = y(t) defined for a ≤ t ≤ b, or at
least a ≤ t ≤ a+ ε for some ε > 0, subject to

y(a) = c

for a given c ∈ Rm. Notice that for the “one-body problem,” m typically denotes
“mass,” and hence we will often write n (or some other letter) in place of m.

It turns out that many of the same principles for a single variable ODE hold for
general ODE’s.

In class we typically write the initial value problem as

y′ = f(t,y), y(t0) = y0

for given t0 ∈ R and y0 ∈ Rn, and when discussing physics, specifically celestial
mechanics, we write

ẏ = f(t,y), y(t0) = y0.

4.3. Common Mathematics Notation and Sources for ODE’s. I highly rec-
ommend UBC Math’s second-term calculus book: https://personal.math.ubc.

ca/~CLP/CLP2/clp_2_ic_text.pdf, by Feldman, Rechnitzer, and Yeager, includ-
ing Section 2.4 as in introduction to ODE’s, https://personal.math.ubc.ca/

~CLP/CLP2/clp_2_ic_text.pdf#page=249&zoom=100,94,861, and Appendix D
on Numerical Solutions to ODE’s: https://personal.math.ubc.ca/~CLP/CLP2/

clp_2_ic_text.pdf#page=435&zoom=100,94,78.
The above textbook, as well as many other mathematics textbooks, use the

notation of [A&G], where x is used in place of t, i.e.,

y′(x) =
dy

dx
(x) = f

(
x, y(x)

)
, y(x0) = y0

for a single-variable ODE, where y(x0) = y0 and you wish to solve this for a function
y : R→ R, or at least y : (a, b)→ R where a < x0 < b, and a is as small as possible,
and b is as large as possible. Of course, in the “initial value problem” we are
often—in practice—mainly interested in y = y(x) for x ≥ x0.

https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf
https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf
https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf#page=249&zoom=100,94,861
https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf#page=249&zoom=100,94,861
https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf#page=435&zoom=100,94,78
https://personal.math.ubc.ca/~CLP/CLP2/clp_2_ic_text.pdf#page=435&zoom=100,94,78
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As soon as you learn integration, you can solve many separable ODE’s, meaning
ODE’s of the form

y′(x) = h(x)g
(
y(x)

)
(the UBC textbook [FRY] writes y′ = f(x)g(y) with f replacing h above). The
idea is to write this as

dy

g(y)
= h(x)dx

and to “integrate”; this doesn’t always work, but it does if g(y) is differentiable
near y = y0 and h(x) is continuous near x = x0. We will give a number of examples
below.

4.4. Common Celestial Mechanics Notation. Celestial mechanics often uses
the notation ẋ = f(t,x). Historically Newton explained Kepler’s observations by
the differential equation

(1) mẍ = −GMm
x

‖x‖32
(expressing “mass times acceleration equals force”), where

(1) M is the mass of the Sun, viewed as located at the origin 0 = (0, 0) ∈ R2;
and

(2) m is the mass of a planet, whose position x = x(t) = (x1(t), x2(t)) is a
function R→ R2; and

(3) G is a universal Gravitational constant.

Hence the Sun pulls the planet toward the Sun—in the direction of −x—by a force
proportional to 1/‖x‖22.

For reasons that will become clear below, given the “initial conditions”

x(t0) = x0, v(t0) = v0,

one easily sees that x(t) lies entirely in the two-dimensional place spanned by x0,v0

(even if x = x(t) takes values in Rd for d ≥ 3). It will follow that one may as well
assume that x(t) takes values in R2.

One reduces this to the form ẏ = f(t,y) by setting v = ẋ (the velocity), a =
v̇ = ẍ (the acceleration), and we write “mass times acceleration equals Force” as

mẍ = ma = F = −GMmx/‖x‖32.

Writing g = GM and y = (v,x) = (v1, v2, x1, x2), we get a “system of 4 ODE’s”:

d

dt


v1
v2
x1
x2

 =


−gx1/r3
−gx2/r3

v1
v2

 , where r = ‖x‖2 =
√
x21 + x22.

In other words, we set

y =


y1
y2
y3
y4

 =


v1
v2
x1
x2





INTRO ODE, REVIEW CALCULUS 9

and we have

ẏ =


−gy3/(y23 + y24)3/2

−gy4/(y23 + y24)3/2

y1
y2

 .
4.5. Force Equals Mass Times Acceleration. A vast class of ODE’s arise from
the formula “force equals mass times acceleration.”

The simplest form of these equations assumes there are n rigid bodies,
whose masses are m1, . . . ,mn, and whose centre of masses are functions x1 =
x1(t), . . . ,xn(t) which are moving in Rd, so that each xi = xi(t) is a function
R → R, or at times [a, b] → R, where a < b and t = a is the “initial time,” and
t = b is the “final time” that interests us.

We often of the masses as “point masses,” meaning that the entire i-th mass is
“concentrated at the xi = xi(t);” this idealized situation often simplifies the laws
of physics involved.

For point masses, the formula “force equals mass times acceleration” implies that

miẍi = mix
′′
i (t) = Fi(t),

where Fi(t) is the force exerted upon the i-th body at time t. Typically the function
Fi(t) is far too complicated to write down; however, one can often write

Fi(t) = fi
(
t,x1(t),x′1(t), . . . ,xn(t),x′n(t)

)
,

where fi can be written more simply, or even just

Fi(t) = fi
(
x1(t), . . . ,xn(t)

)
.

For example, if you toss an apple on the Earth’s surface, and its centre of mass is
therefore a function f : [t0, tend] → R3, its equation of motion is often reasonably
modelled as

mx′′(t) = f
(
x,x′) = (0, 0,−gm)− µ(‖x′‖)x′,

where (0, 0,−gm) is an approximation of the Earth’s gravity on its surface (so g is
roughly 9.807 metres2/sec), and µ : [0,∞) → [0,∞) is a non-negative function de-
fined on the non-negative reals which represents a wind resistance force. Neglecting
wind resistance we get

mx′′(t) = (0, 0,−gm),

which is often a reasonable approximation, as a function [t0, tend], where t0 is the
time at which the apple is tossed, and tend might be when the apple hits something
and breaks into smaller pieces.

Remark 4.1. In class in 2024, I slid a coffee travel mug along a table to illustrate
that it can come to a halt (primarily due to the friction with the table). However,
you wouldn’t expect to see the same thing happen if time were reversed (i.e., the
mug at rest begin to move toward my hand). Hence ODE’s from physics that
involve forces arising from x′ typically don’t follow the same laws of physics if time
were reversed. By contrast, one can typically “reverse time” of any solution to
x′′ = f(x) to get another valid solution. This was indicated in Homework of 2024.
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4.6. The One-Body and Central Force Problems. The first few classes begin
with an example of the “3-body problem,” meaning, three celestial bodies (stars,
planets, etc.) of the same mass, all moving in a plane.

It is much simpler to study the 2-body problem, which can often be reduced to
a “1-body force field” problem. In this case (1) is generalized to

(2) mẍ = −µ(‖x‖2)
x

‖x‖2
,

which is called a central force problem, where µ : [0,∞]→ R often takes only positive
values to represent a single point mass that has a force of magnitude µ(‖x‖2) pulling
it toward the origin 0 ∈ Rd (negative values of µ indicate a repulsive force from 0).
One similarly writes v = ẋ and forms a 2d-dimensional ODE (or “a system of 2d
ODE’s”). It follows that the initial value problem in this case specifies t0 ∈ R and
x0,v0 ∈ Rd, and seeks a unique solution to (1) with

x(t0) = x0, v(t0) = v0

(as remarked earlier, one easily sees that x(t) always lies in the plane (or line or 0)
spanned by x0,v0, hence one can reduce this to the case d = 2). It is easy to see
that v(t0) = v0 = 0, then in some finite time t1, the limit of x(t) as t→ t1 is 0, and
the speed ‖v(t)‖ is faster than the speed of light for t < t1 with t sufficiently close
to t1. Moreover at t = t1 the equation becomes “singular,” and the equation—at
least as written—make no sense at t = t1. [This turns out to be a “mild singularity”
as far as singularities go.]

The more general “one-body” or “force field” equation does not assume that the
force acts in the direction from x to 0 and does not assume the force’s magnitude
depends only on ‖x‖2. Hence this problem can be written as

mẍ = f(x).

An especially interesting case of this equation is the situation where there is a
“potential,” meaning a function φ : Rn → R such that ∇φ = f (we will explain
what this means when we discuss partial derivatives). In this case, using vector
calculus it is easy to see that the “energy”

E(t)
def
= (1/2)‖v(t)‖2 − φ

(
x(t)

)
is independent of time (in brief, the equation ‖v(t)‖2 = v · v, and the chain rule

and the product rule imply that Ė = mv · a − (∇φ)(x) · v = 0, by the equation
ma = f(x) = ∇φ(x)). Once commonly refers to (1/2)‖v(t)‖2 as the kenetic energy
and to φ

(
x(t)

)
(or, at times, −φ) as the potential energy. (Note that φ is only

well-defined up to an additive constant, even thought there is sometime a natural
choice of φ. Hence energy is only defined up to an additive constant, as is typically
the case in physics.)

Example 4.2. The central force problem is a special case of the one-body problem
where the force field f(x) has a potential, namely, φ = ν(x), where

ν(r) =

∫
−µ(r) dr

(which is an indefinite integral). So
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(1) for Newton’s law µ(r) = 1/r2, ν(r) = 1/r plus an arbitrary constant,
although one usually takes ν(r) = 1/r (so that at “infinite distance” the
potential energy is 0);

(2) for the harmonic oscillator (see the next section), µ(r) = Cr, we have
ν(r) = Cr2/2.

Example 4.3. The force field on the Earth’s surface of roughly (0, 0,−gm), with
g is roughly 9.807 metres2/sec), has a potential f(x) = x3g + C for an arbitrary
constant C.

Example 4.4. Certain swimming complexes have a “kid’s ring pool” that is an
annulus, with, say, a gentle2 and counterclockwise force (looking from above, which
is common) due to an externally produced the motion of the water (and the water’s
viscosity). In this case, it is more difficult to move clockwise than counterclockwise,
and hence to move 180◦ around the pool, it takes more work to move clockwise
than counterclockwise. This is an example of a force field where the work needed
from point A to point B depends on the path you take; such force fields are never
potential fields. Moreover, such a force field has a non-zero “curl:” so if the force
field restricted to the annulus is (x2,−x1, 0) (for simplicity), then ∇×(x2,−x1, 0) =
(0, 0,−2) (looking from above) using Hamilton’s quaternionic definition of × (or
(0, 0, 2) looking from below, which reverses the z-axis direction, and thereby the

sign of “k̂” following Hamilon’s convention based on ij = k, rather than the equally
possible convention ij = −k). By constrast, any potential force field F(x) =
∇(φ(x)) has “curl” equal to ∇∧ (∇(φ(x)), which we easily see must vanish.

Remark 4.5. As suggested in the above example, the amount of work it takes
to move from point A to point B in a potential force field F(x) = (∇φ)(x) is
independent of the path you take; this results from the fact that if p : [a, b] → Rd
is differentiable, and p(a) = A and p(b) = B, then, using the chain rule (for the
first equality below),∫ s=b

s=a

(∇φ)(p(s))·dp
ds

(s) ds =

∫ s=b

s=a

d

ds

(
φ(p(s)

)
ds = φ(p(b))−φ(p(a)) = φ(B)−φ(A).

4.7. Introduction to the n-Body Problem. The first few classes begin with an
example of the “3-body problem,” meaning, three celestial bodies (stars, planets,
etc.) of the same mass, all moving in a plane.

Here we want to introduce some basic aspects of the n-body problem. We imagine
n bodies that lie in d-dimensional space, so for each i = 1, . . . , n, the i-body has
mass mi and position xi = xi(t) where xi : R → Rd assuming that we have a
solution valid for all time t.

(Otherwise maybe xi : [t0, tend] → Rd, where t0 is an initial time, and tend is
and ending time that interests us; [A&G] often uses [a, b] instead of [t0, tend], for
consistency with previous topics, such as interpolation or quadrature.)

It is common to write

vi(t) = ẋ(t), ai(t) = ȧ(t) = ẍ(t)

for the velocity and acceleration of the i-th body.

2Gentle for typical pools and typical volicities of kids and their (grand)parents.
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First we assume that “force equals mass times acceleration” yields the equations
of motion

mixi(t) =
∑
j 6=i

Fij(t),

where Fij(t) is the force that the j-th body exerts on the i-th body.

Proposition 4.6. Let n, d ∈ N with n ≥ 1. Say consider any solution of the system
mixi(t) =

∑
i 6=j Fij(t) for i = 1, . . . , n with xi(t) taking values in Rd. such that for

all i 6= j we have Fij(t) = −Fji(t) for all t. Then the total momentum

M(t)
def
=

n∑
i=1

mivi(t) =

n∑
i=1

miẋi(t)

is constant. If, moreover, Fij(t) = −Fji(t) is colinear with xi(t) − xj(t), then the
angular momentum,

Ω(t)
def
=

n∑
i=1

mixi(t) ∧ vi(t)

is constant; if you don’t know what ∧ means and d ≤ 3, there is no harm in viewing
Rd as equal to or a subspace of R3 as usual, and defining (x1, x2, x3) × (v1, v2, v3)
to be the “vector part” of (x1i + x2j + x3k)(v1i + v2j + v3k) under Hamilton’s
quaternionic convention ij = k (and i2 = j2 = k2 = −1).

Proof. We have

Ṁ(t) =

n∑
i=1

miẍ(t) =
∑
i 6=j

Fij(t) =
∑
i<j

(
Fij(t) + Fji(t)

)
=
∑
i<j

0,

and hence Ṁ(t) = 0 and hence M(t) is constant. Using the fact that ∧ (or ×) here
is a bilinear, anti-symmetric operator, the product rule also applies to ∧, and hence
(suppressing the t’s):

Ω̇ =

n∑
i=1

mi

(
ẋi ∧ xi + ẋi ∧ ẍi

)
=

n∑
i=1

mixi ∧

∑
i<j

Fij

 =
∑
i<j

(xi − xj) ∧ Fij = 0,

and hence Ω = Ω(t) is contant. �

Remark 4.7. We remark that for d ≥ 4, ∧ takes two vectors in Rd and returns a
value in a space of dimension

(
d
2

)
= d(d− 1)/2 (that is bilinear and anti-symmetric

in its two arguments) Hamilton’s deserved fascination with quaternions influenced
many others, including Maxwell3 lead to Hamilton’s definition of × as the “vector
part” of quaternionic multiplication, which was profoundly important in the history
of physics. However, confusing ∧ with × can, at times, can cause needless confusion.

When we discuss partial derivatives, we will be able to prove the usual “conser-
vation of Energy” when the forces involved are potential forces.

3 Maxwell’s famous equations first appeared in [?], pages blah. On page blah Maxwell write

that they doens’t want to assume familiarity with quaternions, but on pages blah they explains how
to simplify notation using Hamilton’s quaternions. We thank Prof. Daniel Shapiro for discussions

on regarding Hamilton and Maxwell.
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Proposition 4.8. Say that in Proposition 4.6, for each 1 ≤ i < j ≤ m there is a
function φij : Rd → R such that

Fij(t) = ∇φij(xj − xi),

Then (the total energy of the system, namely)

E
def
=

(
n∑
i=1

(1/2)mi‖ẋi‖22

)
−

∑
i<j

φij
(
xj − xi

)
is constant in time.

CHECK THE SIGNS IN THE ABOVE...

Remark 4.9. When using an ODE solver to generate approximate solutions, it can
be useful to have time-invariant quantities such as momentum, angular momentum,
and total energy. If these quantities are not conserved numerically, then this can
indicate trouble. However, the converse isn’t true unless all conserved quantities
and other inferrable quantities determine the xi(t). This is true for the two-body
problem under Newtonian gravitation (or the analogous one-body problem), but
this isn’t generally true; even for the this two-body problem, the invariants involve
fairly complicated functions (but functions that are explicit, in terms of polynomials
and sines/cosines).

5. Basic Theory and Examples of ODE’s

The basic existence and uniqueness theory for ODE’s can be understood from the
one-variable ODE y′ = f(t, y) (we now use the notation in [A&G], where y′ = dy/dt
and y = y(t) is a function of t). In fact, the basic existence and uniqueness (and
a number of examples) can be understood when f(t, y) = f(y) is independent of t;
this is often the case, with physical laws that don’t change in time. Hence we will
start there.

5.1. The ODE y′ = f(y). This ODE y′ = f(y) is therefore separable, and one can
often solve it by writing

dy

dt
= f(y) ⇒

∫
dy

f(y)
=

∫
dt = t+ C,

and evaluating the indefinite integral above. This always works when f is a dif-
ferentiable function of y; this can be seen from the basic existence and uniqueness
theorem below.

5.2. The Basic Existence and Uniqueness Theorem for y′ = f(y).

Theorem 5.1. Let t0, y0 ∈ R, and let f = f(y) be a function that is defined in a
neighbourhood of y0 (i.e., f : (y0 − δ, y0 + δ)→ R for some δ > 0). Then the ODE

(3) y′ = f(y), y(t0) = y0,

(1) has a local solution, i.e., a solution y = y(t) defined for t ∈ (t− ε, t+ ε) for
ε > 0 if f ∈ C0(y0−δ, y0+δ), i.e., f = f(y) is continuous in (y0−δ, y0+δ);

(2) moreover the solution is unique if f(y) is Lipschitz continuous in (y0 −
δ, y0 + δ), i.e., |f(y2)− f(y1)| ≤ K|y2 − y1| for some K whenever y1, y2 ∈
(y0 − δ, y0 + δ) (this is true whenever f ′ exists in (y0 − δ, y0 + δ) and
|f ′(y)| ≤ K in this interval;
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(3) if f ∈ Ck(y0 − δ, y0 + δ) for some k = 0, 1, . . . or k = ∞ or k = ω, then
y ∈ Ck+1(t0−ε′, t0 +ε′) for some ε′ > 0 (where ∞+1 =∞ and ω+1 = ω);

(4) if f ∈ C0(R) (i.e., f : R → R is everywhere continuous) and for all y ∈ R
we have |f(y)| ≤ K1|y| + K2 for some constants K1,K2 ≥ 0, then any
solution to (3) is defined for all t ≥ t0, and there we have

|y(t)| ≤ z(t),
where z(t) is the solution to z′ = K1z + K2 and z(t0) = |y0|, i.e., z(t) =
(CeK1−K2)/K1 where C satisfies CeK1−K2 = K1|y0|, i.e., C = (K1|y0|+
K2)e−K1 .

The proof of each part of this theorem represents some fundamental ideas re-
garding ODE’s; we will outline the proofs in an appendix.

5.3. The Integral form of the ODE. It is important to understand the integral
form of (3); this is obtained by writing

y(t)− y(t0) =

∫ s=t

s=t0

y′(s) ds

and hence y′ = f(y) implies that

(4) y(t) = y(t0) +

∫ s=t

s=t0

f
(
y(s)

)
ds;

this “integral form” will be used to prove Theorem 5.1 and to derive numerical
(approximate) solutions to the ODE in (3)).

Intuitively speaking, the ODE (3) assumes that y is differentiable, whereas (4)
only assumes that one can make sense of the integral of f(y(s)); the integral form
can be used to make sense of this ODE when f is not even continuous (or could
be a generalized function, e.g., involving the “Dirac” delta function). Moreover, if
we have a function yapprox(t) that is an approximation of a true solution, then the
function

Φ(yapprox)(t)
def
= y(t) = y(t0) +

∫ s=t

s=t0

f
(
yapprox(s)

)
ds

turns out to be a “better approximation” of a true solution (in a number of senses,
for t near t0; see Appendix ??). One consequence is that if we start with any
function y0(t), and let y1 = Φ(y0), y2 = Φ(y1), etc., then the “iterates of Φ on y0,”
i.e., the sequence y0, y1, y2, . . . will converge to a local solution of the ODE (3) when
f is Lipschitz continuous.

5.4. Basic Examples of y′ = f(y).

Example 5.2. The solution y′ = Ay was “guessed” in class to be y(t) = eA(t−t0)y0
(this can be done simply by “guessing,” or by writing dy/dt = Ay, hence dy/y = Adt
and integrating, which is really a more systematic way of guessing). Since this
equation is of the form y′ = f(y) where f(y) = Ay, Theorem 5.1 can be used to
show that this is the unique solution to (3). Note that this solution y = y(t) exists
for all t ∈ R, not merely all t ≥ t0.

Example 5.3. The solution to y′ = y2 and y(1) = 1 was shown in class to be
y(t) = 1/(2 − t), and hence y(t) → ∞ as t → 2− (i.e., t < 2 and t → ∞). Hence
solutions to ODE’s can tend to infinity at some finite time, when y′ = f(y) and f(y)
grows faster than linear in y; by contrast, this doesn’t happen if |f(y)| ≤ K1|y|+K2.
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Example 5.4. In class we showed that the solution to y′ = |y|1/2 has the following
solution for any a, b ∈ R with a < b:

y(t) =

 −(1/4)(t− a)2 if t ≤ a,
0 if a ≤ t ≤ b,
(1/4)(t− b)2 if t ≥ b.

It is not hard to show that such y(t) are the only possible solutions (if we allow
for the “limiting cases” a = −∞ and b = +∞), since f(y) = |y|1/2 is infinitely
differentiable for y 6= 0. We easily see that y′(t) exists for all t and that

y′(t) =

 −(1/2)(t− a) if t ≤ a,
0 if a ≤ t ≤ b,
(1/2)(t− b) if t ≥ b.

It follows that y′′(a−), i.e., “y′′ at a from the left” (or “left derivative of y′ at a)
equals

y′′(a−) = lim
t→a−

y′(a)− y′(t)
a− t

= lim
t→a−

0− (−1/2)(t− a)

a− t
= lim
t→a−

−1

2
= −1/2,

and similarly

y′(b+) = 1/2,

and if a < b then y′(a+) = y′(b−) = 0. Hence y′′ does not exist at a and b
(assuming both a, b are finite, regardless of whether or not a = b or a < b). Hence
y(t) is always differentiable, but never twice differentiable (unless we consider the
limiting case a = −∞ and b = +∞, meaning y(t) = 0 for all t). In particular, the
initial value problem

y′ = |y|1/2, y(t0) = y0

never has a unique solution. We will also see that this ODE has some rather
“chaotic” behaviour when we try to solve it numerically.

5.5. m-dimensional ODE’s. A lot of the theory, and some simple examples of
ODE’s (e.g., those with constant coefficients) generalize almost word-for-word to
m-dimensional ODE’s and the initial value problem

y′(t) = f
(
t,y(t)

)
, y(t0) = y0.

For example the constant coefficient ODE y′ = Ay, hence y(t) has values in Rm
and A ∈ Rn×n, i.e., A is a real n× n matrix. Its general solution is

y(t) = eA(t−t0)y0.

In the next section we elaborate on this and explain what we mean by eA(t−t0)

when A is a square matrix. (The same is true if A ∈ Cm×m and y(t) has values in
Cm; here t is (most simply) still real-valued.)

Similarly Theorem 5.1 generalizes to the m-dimensional case, with etc.
ADD MORE HERE?

6. The Harmonic Oscillator and the ODE y′ = Ay

Consider a function x : R → R (or, at times, x : [a, b] → R for some given reals
a < b), which represents the centre of mass of some object moving along the x-axis;
it is often simplest to think of the object as a “point mass,” meaning a mass entirely
concentrated at a single point.
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So say a point mass moves entirely along the x-axis, whose position is x = x(t),
and is subject to a force exerted on it by a spring (with one end connected to the
point mass, and another end anchored somewhere along the x-axis). In class we
explained that if the “rest position” of the end of the spring connected to the point
mass is x0, the equation “force equals mass times acceleration” is often modelled
as

mx′′ = −C(x− x0)

where C > 0 is a constant depending on the spring. By translating the x coordinate
we can assume that x0 = 0, i.e., mx′′ = −Cx. Scaling time we may restrict to
x′′ = −x. Hence, writing v = x′ (which is the velocity of the point mass), we have
the 2-dimensional system

d

dt

[
v
x

]
=

[
0 −1
1 0

] [
v
x

]
,

or

y′ = Ay, where y =

[
v
x

]
, A =

[
0 −1
1 0

]
.

Given the solution to the one-dimensional ODE y′ = Ay, we could guess that
the solution to the above ODE, subject to the initial value

y(t0) = y0, i.e.,

[
v(t0)
x(t0)

]
=

[
v0
x0

]
,

for v0, x0, t0 ∈ R might be

y(t) = eA(t−t0)y0,

where for a square matrix, M , we define

eM = I +M + (1/2)M2 + (1/3!)M3 + · · ·
Of course, we have to convince ourselves that this infinite series makes sense, and
that we can differentiate the series

eA(t−t0) = I +A(t− t0) + (1/2)
(
A(t− t0)

)2
+ (1/3!)

(
A(t− t0)

)3
+ · · ·

term by term, so that(
eA(t−t0)

)′
=
(
I +A(t− t0) + (1/2)

(
A(t− t0)

)2
+ (1/3!)

(
A(t− t0)

)3
+ · · ·

)′
= I ′ +A(t− t0)′ + (1/2)A2

(
(t− t0)2

)′
+ (1/3!)A3

(
(t− t0)3

)′
+ · · ·

= A+ (1/2)A22(t− t0) + (1/3!)A33(t− t0)2 + · · · = AeA(t−t0),

which mimics the computation when A is a 1× 1 matrix, i.e., a real number.
To compute eA(t−t0) for the above case of A, we notice that

A =

[
0 −1
1 0

]
, A2 =

[
0 −1
1 0

]2
=

[
−1 0
0 −1

]
= −I,

and therefore A4 = (−I)2 = I, and hence

I = A0 = A4 = A8 = · · · , A = A5 = A9 = · · · ,
etc., and hence

eA(t−t0)

=

[
1− (1/2)(t− t0)2 + (1/4!)(t− t0)4 − · · · −(t− t0) + (1/3!)(t− t0)3 − (1/5!)(t− t0)5 + · · ·

(t− t0)− (1/3!)(t− t0)3 + (1/5!)(t− t0)5 − · · · 1− (1/2)(t− t0)2 + (1/4!)(t− t0)4 − · · ·

]
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=

[
cos(t− t0) − sin(t− t0)
sin(t− t0) cos(t− t0)

]
7. Euler’s Method and the (Explicit) Trapezoidal Rule

Sections 16.2 of [A&G] discusses Euler’s method to approximate solutions of
ODE’s, and 16.3 gives a much wider class of ODE approximation methods known as
Runge-Kutta methods, which includes Euler’s method and a common improvement
of Euler’s method known as the (explicit) trapezoidal rule.

7.1. Euler’s Method. Euler’s method to numerically approximate a solution to
the initial value problem

y′ = f(t,y), y(t0) = y0,

can be derived as follows: for “small h > 0” we have

y′(t) ≈ y(t+ h)− y(t)

h
,

and therefore

(5) y(t+ h) ≈ y(t) + hy′(t) = y(t) + hf
(
t,y(t)

)
.

Hence, choose a small h > 0 (which depends on various considerations, including
how much compute power you have); the setting

t1 = t0 + h, t2 = t0 + 2h, . . . ,

i.e., each i ∈ Z, ti = t0 + ih, we can approximate y(ti) by applying (5) with t = ti
to obtain

y(ti+1) = y(ti + h) ≈ y(ti) + hf
(
ti, y(ti)

)
.

This produces y1, y2, . . ., which respectively approximate y(t1), y(t2), . . ., given re-
cursively as

yi+1 = yi + hf(ti, yi).

We may similarly produce y−1, y−2, . . . approximating y(t−1), y(t−2), . . . (with
t−i = t0 − ih), one can similarly write y′(t) ≈ (y(t) − y(t − h))/h and derive
the approximation

y−i−1 = y−i − hf(t−i, y−i)

for i = 0, 1, 2, . . .

7.2. An Example of Euler’s Method. Consider the ODE

y′ = Ay, y(t0) = y0

whose exact solution is y(t) = eA(t−t0)y0. So imagine we fix real tend > t0, and use
Euler’s method to estimate y(tend). For simplicity, we fix an (ideally) large integer
N > 0, and set h = (tend − t0)/N , so that tN = tend for this choice of h. Euler’s
method gives

yi+1 = yi + hAyi = (1 +Ah)yi,

and hence, by induction, yi = (1 +Ah)iy0 for all i ≥ 1; hence the approximation of
y(tend) is

yN = (1 +Ah)Ny0 =
(
1 +A(tend − t0)/N

)N
y0.

There are a number of ways to derive the fact that for any x ∈ R,

lim
N→∞

(1 + x/N)N = ex,
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and therefore (
1 +A(tend − t0)/N

)N N→∞−−−−→ eA(tend−t0).

Hence, as N →∞, Euler’s formula approximation to y(tend) tends to its true value.

7.3. The (Explicit) Trapezoidal Method. The (explicit) trapezoidal method
often gives a better approximation than Euler’s method. Given yi an approximation
for y(ti), it determines an approximation for y(ti+1) by setting

Yi+1 = yi + hf(ti, yi),

and then taking

yi+1 = yi + h
f(ti, yi) + f(ti+1, Yi+1)

2
.

Hence Yi+1 above looks like Euler’s approximation, but it sets yi+1 using yi and
Yi+1.

In class we explained: if f(t, y) = f(t), then the solution to the initial value
problem (8) is

y(t) = y0 +

∫ s=t

s=t0

f(s) ds.

In this case, Euler’s method is like the “rectangular approximation,” i.e., writing

y(t0 + h) ≈ y0 + hf(t0),

hence equivalent to

y0 +

∫ s=t0+h

s=t0

f(s) ds ≈ y0 + hf(t0),

i.e., ∫ s=t0+h

s=t0

f(s) ds ≈ hf(t0),

which is the usual “rectangle rule” for approximating the integral. However, for
the Trapezoidal method we set

y(t0 + h) ≈ y(t0) + h
f(t0) + f(t1)

2
,

which is the usual “trapezoid rule” for approximating an integral.
In [A&G], it is explained that for fixed t0, y0, f and small h, we have

y(t1) = y(t0 + h) = y(t0) + hf(t0, y0) +O(h2).

By contrast, the trapezoidal method gives an O(h3) error, which typically an im-
provement (or no worse, even if f is not differentiable). For more details, CON-
TINUE HERE OR ASSIGN THE DETAILS FOR HOMEWORK.

POSSIBLE HOMEWORK PROBLEM: How does y′ = Ay perform under the
(explicit) trapezoidal method? And: show that it converges faster as N → ∞ in
comparison to Subsection 7.2.
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8. Similarity and a More Systematic Way of Computing eAt and An

for Matrices A

To compute functions of a square matrix, A, such as eAt and An for t ∈ R and
n ∈ Z, we use similarity. The idea is that if we can find a matrices S,B such that
S is invertible and

A = SBS−1,

then we have

A2 = SBS−1SBS−1 = SB2S−1,

and similarly Ak = SBkS−1, and hence f(A) = Sf(B)S−1 for any polynomial
f = f(x), and hence any globally convergent power series, f , and similarly any real
analytic f , etc.

Remark 8.1. In class in 2024, we pointed out that if Ai = SBiS
−1 for i = 1, 2, 3,

then A3A2A1 = SB3B2B1S
−1. This was demonstrated by the instructor, taking

S−1 to be “Joel moves from the podium to the blackboard,” and B1, B2, B3 to be,
respectively, writing “Goo,” “d af,” “ternoon.” on the blackboard (or something
like that). We demonstrated that

(SB3S
−1)(SB2S

−1)(SB1S
−1)

indeed had the same effect as (the considerably more efficient) SB3B2B1S
−1.

Next, given any A, we try to find a B that is as simple as possible such that
A = SBS−1. For example, if A ∈ R2×2 (i.e., A is a real 2× 2 matrix), and

B =

[
λ1 0
0 λ2

]
,

(for some λ1, λ2 ∈ R, or λ1, λ2 ∈ C) then we easily see that

B2 =

[
λ21 0
0 λ22

]
,

and we similarly see that

f(B) =

[
f(λ1) 0

0 f(λ2)

]
where f = f(x) is any polynomial, globally convergent power series, etc. It then
follows that

f(A) = Sf(B)S−1 = S

[
f(λ1) 0

0 f(λ2)

]
S−1.

Definition 8.2. Let A be a n× n square matrix (over R or C). We say that A is
diagonalizable if for some n×n matrix S with complex entries, and real or complex
numbers λ1, . . . , λn, we have

(6) A = S


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn

 .
If λ ∈ R (or C) and Av = λv for some vector v 6= 0 (so v ∈ Rn or Cn), we say
that λ is an eigenvalue of A and any such v is an eigenvector of A corresponding
to the eigenvalue λ; we also call (λ,v) an eigenpair of A.
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Remark 8.3. If (6) holds, then the columns of S are linearly independent, and
the i-th column, vi, of S forms an eigenpair (λi,vi) (i.e., Avi = λivi); the converse
also holds.

In the next section we will see that not all matrices are diagonalizable.
In class we showed examples that to illustrate that if a 2×2 matrix has eigenpairs

(λ1,v1) and (λ2,v2), and if S has its columns consisting of v1 and v2, then

AS = SB, where

[
λ1 0
0 λ2

]
,

since multiplying on the right by B operates on the columns of S. If v1,v2 are
linearly independent, and then S are invertible as well, and hence

A = SBS−1

is a “diagonalization of A.”
One way to find eigenpairs is to note that if Av = λv = λIv, then (A−λI)v = 0.

Hence, in this case we can say that M = A−λI has any of the equivalent properties:
(1) M has a non-trivial nullspace, (2) M is not invertible, (3) M has rank less than
n, (4) det(M) = 0, (5) the row echelon form of M has a row of 0’s, (6) the image
of M is of dimension less than n, (7) etc. One method for finding eigenvalues of
a 2 × 2 matrix is to solve the equation det(A − λI) = 0; since det(A − λI) is a
polynomial with leading term λ2, there are always two solutions (at least over C).

We remark that if A is n×n with n odd, then det(A− λI) is a polynomial with
leading term −λn; for this (and other) reasons, one tends to work with det(λI−A)
instead (which is called the characteristic polynomial of A).

[Looking for solutions of det(λI −A) = 0 when A is a large square matrix tends
to be numerically impractical; there are a lot of other general methods to find
eigenpairs, especially in special types of matrices.]

Example 8.4. Say that

A =

[
2 4
3 6

]
.

Then

det(λI −A) = det

[
λ− 2 −4
−3 λ− 6

]
= (λ− 2)(λ− 6)− 12 = λ2 − 8λ.

Hence A has two eigenvalues, λ = 0, 8. To find a corresponding eigenvector to
λ = 8, we solve for

(8I −A)v = 0,

hence [
6 −4
−3 2

]
v = 0,

and we find that any (non-zero) multiple of v1 = [2/3 1] yields a corresponding
eigenvector. Similarly for v2 = [−2 1]. Hence

A = S

[
8 0
0 0

]
S−1, where S =

[
2/3 −2
1 1

]
.

In particular

eAt = S

[
e8t 0
0 1

]
S−1,

(since e0·t = 1), and similarly for An.
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There are a number of families of matrices with well-known eigenvectors and/or
eigenvalues. For example, for any a, b ∈ R,

A =

[
a b
b a

]
has eigenpairs (a+b, [1 1]) and (a−b, [1 −1]); this is an example of (square) Toeplitz
matrix, whose eigenvectors in the n×n case are known to be vζ = [1 ζ ζ2 · · · ζn−1]
where ζn = 1, and corresponding eigenvalues are given by the “(literal, not complex)
dot product” of ζv with the top row of the matrix).

As another example, if

A =

[
a b
−b −a

]
then the eigenvalues are ±

√
a2 − b2, which are necessarily complex if |b| > |a|2.

8.1. Eigenvalues of Other Matrices. One can get a lot of important intuition
about eigenvalues and their meaning by consider other classes of matrices.

Example 8.5. Let

A =

[
cos θ − sin θ
sin θ cos θ

]
,

which is counterclockwise rotation by θ (i.e., addition by +θ in the angular polar co-
ordinate) in R2 (i.e., v 7→ Av takes (1, 0) to (cos θ, sin θ) and (0, 1) to (− sin θ, cos θ).
Then A has eigenvalues λ = e±iθ where i =

√
−1. Hence An, after a similarity

transformation, looks like a diagonal matrix with diagonal entries e±iθn.

Example 8.6. Let V ⊂ Rn be a d-dimensional subspace of Rn, and let P : Rn → V
be the orthogonal projection to V . Then if V ′ is the n−d orthogonal complement of
V , P takes V ′ to 0, and is the identity map on V . It follows that P has eigenvalues
0 and 1, with 0 having multiplicity n− d and 1 having multiplicity d.

9. Finite Recurrences and Relationship to ODE’s

One of the most famous recurrences (with constant coefficients) is the Fibonacci
recurrence equation

Fn+2 = Fn+1 + Fn, subject to F1 = 1, F2 = 1,

which yields the Fibonacci numbers

F3 = 2, F4 = 3, F5 = 5, F6 = 8, F7 = 13, F8 = 21, F9 = 34, . . .

and, writing Fn = Fn+2 − Fn+1, and setting n = 0,−1,−2, . . . we get

F0 = 0, F−1 = 1, F−2 = −1, F−3 = 2, F−4 = 3, F−5 = −5F−6 = 8, F−7 = −13, . . .

We study finite recurrences for a few reasons: (1) they are the discrete analog
of ODE’s; (2) ODE approximation methods (e.g., Euler’s method, explicity trape-
zoidal rule) are actually finite recurrence equations; and (3) it is easier to see what
goes wrong with finite recurrences that the analogous ODE solvers. For an example
of (3), it is easy to see that the Fibonacci recurrence Fn+2 = Fn+1 + Fn is prob-

lematic as n→∞ for a solution F0 = 1 and F1 = (1−
√

5)/2; you can see this by
typing in MATLAB:
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clear

F{1}=1

F{2}=(1-sqrt(5))/2

for i=3:1000, F{i}=F{i-1}+F{i-2}; end

If you examine F{20} and F{2}^19, things look pretty good. (just try typing in
differentiation, it is sometimes easier to see what goes wrong with finite recurrences.
If you type for i=1:10:141, {i,F{2}^(i-1),F{i}}, end, you start to see the
effect of roundoff/truncation. And if you examine F{1000} and F{2}^999, things
look rediculous.

In terms of ODE’s, it best to view the Fibonacci numbers as defined by a finite
recurrence (equation)

(7) Fn+2 − Fn+1 − Fn = 0, ∀n ∈ Z,

and initial conditions

F1 = 1, F2 = 1.

It is immediate this equation plus initial conditions determine Fn for integers n ≥ 3;
since one can also solve for Fn as Fn+2−Fn+1, these initial conditions also uniquely
determine Fn for integers n ≤ 0.

Just as for second order ODE’s, one can write

yn =

[
Fn+1

Fn

]
and write (7) as a two-term recurrence

yn+1 =

[
Fn+2

Fn+1

]
=

[
Fn+1 + Fn
Fn+1

]
=

[
1 1
1 0

] [
Fn+1

Fn

]
,

and hence

yn+1 =

[
1 1
1 0

]
yn.

Hence, by induction we have

yn =

[
1 1
1 0

]n
y0.

It turns out (just as we guessed that y′ = Ay has y(t) = eAtC as its general
solution), there is a standard way to “guess” solutions to finite recurrence equations.
To solve (7), we “guess” that Fn = rn might work for certain r ∈ C, and we see
that (7) holds iff

rn+2 = rn+1 + rn ∀n ∈ Z.
Assuming that r 6= 0, this is equivalent to

r2 = r + 1,

whose solution is the golden ratio and its “conjugate”4

r =
1±
√

5

2
.

4 Here “conjugate” is actually a precise term in algebra: it is the conjugate over the degree
two extension Q(

√
5) over Q.
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Notice that (7) is a “linear recurrence,” meaning that any linear combination of
solutions to (7) is again a solution; it follows that

Fn = c1

(
1 +
√

5

2

)n
+ c2

(
1−
√

5

2

)n
.

Since for any given values of F0, F1, one can find c1, c2 such that

c1

(
1 +
√

5

2

)0

+ c2

(
1−
√

5

2

)0

= F0

c1

(
1 +
√

5

2

)1

+ c2

(
1−
√

5

2

)1

= F1

it follows that all solutions to (7) can be written in this way. We remark that
(

1+
√
5

2

)0 (
1−
√
5

2

)0(
1+
√
5

2

)1 (
1−
√
5

2

)1


is an example of a 2×2 Vandermonde matrix. In general, the solution of any recur-
rence relation with constant coefficients will produce a generalized Vandermonde
matrix; we’ll say more about this when we cover interpolation and when we cover
more about numerical differentiation and Taylor’s theorem.

For more examples regarding recurrences, the reader can consult “CPSC 303:
Recurrence Relations and Finite Recurrences.” This article was created in version
of the course that did not contain a three-week (or so) introduction to ODE’s and
MATLAB; hence this article is self-contained and motivates recurrences as a way
to test the limits of double precision.

10. More on ODE’s Arising in Celestial Mechanics and Newton’s
Gravitational Law

———————————————————–

Appendix A. Fundamental Theorems Regarding ODE’s

In this section we consider an ODE initial value problem, by which we mean an
equation

(8) y′(t) = f
(
t,y(t)

)
, y(t0) = y0,

or more concisely

(9) y′ = f(t,y), y(t0) = y0,

where f is defined near (t0,y0), i.e., specifically on a “closed neighbourhood” of
(t0,y0) of the form:

Nδ1,δ2 =
{

(t,y)
∣∣ |t− t0| ≤ δ1, ‖y − y0‖ ≤ δ2}

for some δ1, δ2 > 0; hence f : Nδ1,δ2 → Rm. See [A&G], Section 16.1, page 482,
which uses a, c instead of t0,y0. Often f extends to a function R×Rm → R. By a
local solution of (8) or (9), we mean a differentiable function

y : (t0 − ε, t0 + ε)→ Rm
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satisfying

(10) y(t0) = y0, and ∀|t− t0| < ε, y′(t) = f
(
t,y(t)

)
.

A.1. The Existence Theorem.

Theorem A.1. Consider an initial value problem (9) where f is a continuous
function defined in a neighbourhood of (t0,y0). Then there exists a local solution
(10) to (9). More precisely, let ‖·‖ be any norm on Rm, and say that for δ1, δ2 > 0,
f : Nδ1,δ2 → Rm is continuous and that ‖f‖ ≤ B in all of Nδ1,δ2 . Then in (10) we
may take ε = max(δ1, δ2/B), and y satisfies

‖y(t)− y(s)‖ ≤ B|t− s|

for all s, t ∈ (t0 − ε, t0 + ε).

The usual way to conceptualize the proof below is by stating the Arzelà-Ascoli
Lemma as an intermediate step. Here we give the entire proof from scratch.

Proof. We use Euler’s method, run forwards and backwards: fix f, t0,y0, δ1, δ2, B, ε
as in the theorem statement. For each h > 0 define fh(t) as follows: let N be
the largest natural number such that Nh < ε; for each integer i with |i| ≤ N , let
ti = t0 + ih. Hence for all 0 ≤ i ≤ N we have

(11) |ti − t0| ≤ h|i| ≤ hN < ε < δ1.

Next, for each i = 0, 1, 2, . . . , N − 1, we inductively define yi+1 and y−(i+1) via

yi+1 = yi + hf(ti,yi),

and

y−(i+1) = y−i − hf(t−i,y−i).

As we do so, by induction on i = 0, . . . , N − 1 we claim that

‖yi+1 − yi‖ ≤ Bh
‖y−(i+1) − y−i‖ ≤ Bh;

to see this, note that (1) these inequalities hold for i = 0 since (t0,y0) ∈ Nδ1,δ2 and
hence; ‖f(t0,y0)‖ ≤ B, and (2) if these inequalities hold with i replaced by any
integer less than i, then

‖yi − y0‖ ≤ ‖yi − yi−1‖+ · · ·+ ‖y1 − y0‖ ≤ Bih ≤ BNh < δ2

and similarly for ‖y−i − y0‖; hence (ti,yi), (t−i,y−i) both lie in Nδ1,δ2 . Hence,

‖yi+1 − yi‖ ≤ Bh.

and similarly for ‖y−(i+1) − y−i‖.
Now we define yh : (t0 − ε, t0 + ε)→ Rm by setting

∀t0 ≤ t < t0 + ε, yh(t) = yi where i = b(t− t0)/hc,

and

∀t0 − ε < t ≤ t0, yh(t) = yi where i = −b−(t− t0)/hc.
From the above we have that yh is defined for all t with |t− t0| < ε. Moreover, we
claim that for any t′, t′′ ∈ (t0 − ε, t0 + ε) we have

(12) ‖yh(t′)− yh(t′′)‖ ≤ B(|t′ − t′′|+ 2h),
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since we may assume t′ < t′′, and then take the closest ti′ = t0 + hi′ to t′ with
ti′ ≥ t′, and similarly define ti′′ , and then estimate the above left-hand-side of (12)
via

‖yh(t′)−yh(t′′)‖ ≤ ‖yh(t′)−yh(ti′)‖+‖yh(ti′)−yh(ti′′)‖+‖yh(ti′′)−yh(t′′)‖ ≤ h+B|ti′−ti′′ |+h,

which establishes (12).
So consider the sequence y1, y1/2, y1/3, y1/4, . . .. From (12) we have that y1/n(t) is

bounded for each t ∈ (t0−ε, t+ε). Since the set of rational numbers in (t0−ε, t+ε) is
countable, by passing to successive subsequences and taking a diagonal subsequence,
we can produce a sequence of naturals n1 < n2 < . . . such that for any rational
r ∈ (t0 − ε, t + ε), we have that y1/ni

(r) converges. So define f(r) for each such
rational as the limit of y1/ni

(r).
Hence y is defined on all rational numbers in the interval I = (t0 − ε, t+ ε). Let

us show that y(r) extends to a unique function y defined on the entire interval.
It follows that for any t′, t′′ ∈ (t0− ε, t+ ε) and integers i′ < i′′, (12) implies that

(13) ‖y1/ni′ (t
′) − y1/ni′′

(t′′)‖ ≤ B(|t′ − t′′|+ 2/ni′).

Hence for any rational r′, r′′ ∈ I we have, taking i′ →∞,

(14) ‖y(r′)− y(r′′)‖ ≤ B|r′ − r′′|.

It follows that if t ∈ I, and r1, r2, . . . is any sequence of rationals tending to t, y(ri)
is a Cauchy sequence, and therefore has a limit y(t); (14) shows that this limit
is independent of the choice of the sequence, and that for any t′ ∈ I, by taking
a sequence of rationals tending to t, and another to t′, an argument similar to
establishing (12) establishes

(15) ‖y(t)− y(t′)‖ ≤ B|t− t′|.

We also remark that for all t ∈ I, we have (t,y(t)) ∈ N , and hence

(16) g(x)
def
= max

t,t′∈I and |t−t′|=x,
‖f(t,y(t)− f(t′,y(t′))‖

exists (since N is closed), and moreover g(x) → 0 as x → 0 (if not, we take a
sequence of xi, ti, t

′
i with xi → 0, |ti− t′i| = xi, and the above right-hand-side, with

ti, t
′
i replacing t, t′, bounded away from 0; this contradicts the closure of N and

the continuity of f). Now let us prove that y(t) is a solution to the initial value
problem in question.

The estimate (15) and (16) shows that for any t ∈ I we have∫ s=t

s=t0

f
(
s,y(s)

)
ds

exists, and equals the limit of its Riemann sums starting from either endpoint (note
that for n ≥ 2, this Riemann sum is really a sum of vectors, not reals). The fact
that for any i and t ∈ I with t > 0 we have

y1/ni
(t) = y0 + (1/ni)

(
f
(
1/ni,y1/ni

(1/ni)
)

+ · · ·+ f1/ni

(
1/ni,y1/ni

(btnic/ni
))

;

note also that∣∣∣∣∫ s=t

s=t0

f
(
s,y(s)

)
ds−(1/ni)

(
f
(
1/ni,y(1/ni)

)
+· · ·+f

(
1/ni,y(btnic/ni)

))∣∣∣∣ ≤ (1/ni)btnic max
0≤x≤1/ni

g(x) ≤ G(1/ni),
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where

G(x)
def
= max

0≤x′≤x
g(x),

and g is as in (16). Taking i→∞ we get∣∣∣∣y(t)− y0 −
∫ s=t

s=t0

f
(
s,y(s)

)
ds

∣∣∣∣ ≤ lim
i→∞

G(1/ni) = 0.

Hence y(t) is a solution to the ODE in question, for all t ∈ I. �

Remark A.2. The example y′ = |y|1/2 shows that you really have to define y
above by taking a subsequence y1/ni

that converges on all rationals, I, or at a
subset thereof whose closure contains the endpoint of I: indeed, in the above proof
you can take δ1 arbitrarily large, and with (t0, y0) = (0, 0) you can take δ2 = C

and B =
√
C for any real r > 0. Then I = (−

√
C,
√
C) = (−B,B); if y1/ni

doesn’t converge near, say,
√
B, then there are different possible limiting values for

y1/ni
near

√
B, and by oscillating between any two such solutions to this ODE, you

cannot hope to have the limit y1/ni
(
√
B) to exist.

Appendix B. Preliminary Facts from Advanced Calculus

Many readers will know these lemmas; others who don’t may wish to skip the
proofs. The proofs are standard and comprise some basic tools of advanced calculus.

Lemma B.1. There is an infinite sequence q1, q2, . . . of rational numbers that con-
tains each rational number at least once.

Proof. We write the rationals in “phases,” namely

Phase 1: 0
Phase 2: 1/1,−1/1
Phase 3: 2/1,−2/1, 1/2,−1/2,
Phase 4: 3/1,−3/1, 2/2,−2/2, 1/3,−1/3,

and so on; hence each “phase” has finitely many rationals, and the fraction ±a/b
with a, b ∈ N appears in phase a+ b. Combining the phases starting with Phase 1
and onward, we get the sequence

0, 1/1,−1/1, 2/1,−2/1, 1/2,−1/2, 3/1,−3/1, 2/2,−2/2, 1/3,−1/3, . . .

which contains every rational at least once. �

Lemma B.2. Let r1, r2, . . . be a sequence of bounded real numbers, i.e., |ri| ≤ M
for some M ∈ R. Then the sequence has a convergent subsequence, i.e., there are
integers n1 < n2 < n3 < . . . such that

lim
i→∞

rni
= r

for some real r (with |r| ≤M).

Proof. Introduce the notation n1,i = i, and let I1 = [−M,M ], which is a closed
interval of length 2M .

Since I1 = [−M, 0] ∪ [0,M ], there are either infinitely many ri in [−M.0], or
infinitely many in [0,M ] (or infinitely many in both). Let I2 contain infinitely
many, with I2 being either [−M, 0] or [M, 0]; hence I2 is of length M = |I1|/2,
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and for some n2,1 < n2,2 < n2,3 < . . . we have rn2,i
∈ I2 for all i. Hence we have

produced sequences

n11 = 1, n12 = 2, n13 = 3, . . .
n21, n22, n23, . . .

such that the lower sequence is a subsequence of the upper sequence.
Similarly, we can find an interval I3 of length |I2|/2 = |I1|/4, and a subsequence

n31, n32, . . . of n21, n22, n23, . . . such that r3i ∈ I3 for all i. Continuing in this fashion
we get an array

n11 = 1, n12 = 2, n13 = 3, . . .
n21, n22, n23, . . .
n31, n32, n33, . . .

...,
...,

...,
. . .

of successive subsequences such that for each j ∈ N, nj1, nj2, . . . ∈ Ij , where Ij is
an interval of size M/2j−1.

We now claim that the “diagonal sequence” rn1,1 , rn2,2 , rn3,3 , . . . has a limit. The
details are omitted. �

Exercises

(1) Here will appear Exercise 1.
(2) Here will appear Exercise 2.
(3) Here will appear Exercise 3.
(4) Etc.
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