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2 JOEL FRIEDMAN

1. Review of Splines

In class we explained the sense in which splines are “localized:” namely, given
a function f : R → R and real numbers A = x0 < x1 < · · · < xn = B, there is a
unique function v ∈ C2[A,B] that minimizes the energy

Energy2(u)
def
=

∫ B

A

(
u′′(x)

)2
dx

(hence we view Energy2 : C2[A,B]→ R) subject to the conditions

v(x0) = f(x0), v(x1) = f(x1), . . . , v(xn) = f(xn).

v = v(x) is known as the “natural cubic spline” through (xi, f(xi)) for i = 0, 1, . . . n.
Moreover, for each i, for xi ≤ x ≤ xi+1 we have v(x) = si(x), where si is a cubic
polynomial

si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3,
we have that ai, bi, di can be written as functions of

ci, ci+1, hi = xi+1 − xi, f(xi), f [xi, xi+1].

In this sense, the ai, bi, di dependend only on “nearby” values of c, i.e., ci, ci+1,
and the values xi, xi+1 and the values of f there. It turns out that setting c =
(c1, . . . , cn−1), and setting c0 = cn = 0 (when needed), we have that c can be
determined by the equations
(1)

2 h1

h0+h1
h1

h1+h2
2 h2

h1+h2

. . .
. . .

. . .

hn−2

hn−2+hn−1
2 hn−1

hn−2+hn−1
hn−1

hn−1+hn
2


c = 3Φ, where Φ =


f [x0, x1, x2]
f [x1, x2, x3]

...
f [xn−3, xn−2, xn−1]
f [xn−2, xn−1, xn]



(see class notes or [A&G], top of page 343, Section 11.3, where the i-th equation/row
is divided by hi−1 + hi).

To understand (1) in a concrete example, if hi = xi+1 − xi are all equal, so we
may write h = hi for all i, (1) becomes

(4 +Nrod,n)c = 6Φ,

where

Nrod,n =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


.

It follows that
c = (4I +Nrod,n)−16Φ,
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where I is the identity matrix (of size n × n); we easily see that ‖Nrod,n‖∞ ≤ 2,
and hence we get a convergent series

(4I +Nrod,n)−1 = (1/4)
(
I −

(
Nrod,n/4

)
+
(
Nrod,n/4

)2 − · · ·)
and therefore

(2) c =
(
I −

(
Nrod,n/4

)
+
(
Nrod,n/4

)2 − · · ·)(3/2)Φ.

We will see below that for any k ∈ N, Nk
rod,n has all its entries “near the diagonal”

in the sense that its i, j entry is 0 if |i− j| ≥ k + 1. Hence we have

(4I +Nrod,n)−1 = (1/4)

∞∑
m=0

(
−Nrod,n/4

)k
which for any k ∈ N can be written as

(3) (1/4)

k∑
m=0

(
−Nrod,n/4

)k
+ (1/4)

∞∑
m=k+1

(
−Nrod,n/4

)k
,

where the first sum has its (i, j)-th entry 0 unless |i− j| ≤ k, and the second sum
has ∞-norm (and hence each entry) bounded by

(1/4)

∞∑
m=k+1

∥∥(−Nrod,n/4)k
∥∥
∞ ≤ (1/4)

∞∑
m=k+1

‖Nrod,n/4‖k∞ = (1/4)

∞∑
m=k+1

(1/2)k = 1/2k+2.

Hence (3) means that up difference of at most 1/2k+2 in each row, (4I +Nrod,n)−1

has all its nonzero entries within k of the diagonal. Hence, for any k ∈ N, (2)
implies that each ci depends only on the f [xj−1, xj , xj+1] where |i− j| ≤ k up to a
difference of at most (1/2k+2)‖Φ‖∞. In this sense each piece of the natural spline
si(x) depends only on the values of f(xj) for j “near i.”

1.1. Why the Name Nrod,n? We use the notation Nrod,n because this matrix
features as the one-dimensional Laplacian of a one-dimensional metal rod. Roughly
speaking, the reason is that we have second derivative approximation:

f ′′(x0) =
f(x0 + h) + f(x0 − h)− 2f(x0)

h2
+O(h2)

for a fixed, four times differentiable function f : R→ R, a fixed x0 ∈ R, and h→ 0
(see the middle of page 412, Subsection 14.1.4). Hence if x0, x1, x2, . . . , xn are
evenly spaced reals with h = xi+1−xi, and f is a function with f(x0) = f(xn) = 0
(this condition is called the Dirichlet condition on f), and for any f : R→ R we set

f(x)
def
=


f(x1)
f(x2)

...
f(xn−1),


then

f ′′(x) ≈ Nrod,n − 2I

h2
f(x) +O(h2).
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2. Directed Graphs and Graphs, and their Adjacency Matrices

One easy way to understand the powers of Nrod,n comes from the fact that this
matrix is the adjacency matrix of a very simple graph, namely the graph Pn−1 often
called the path of length n− 1. Let us review the definitions.

By a simple directed graph we mean a pair G = (V,E), where V is a finite set
— called the vertex set — and E ⊂ V × V — called the (directed) edge set, i.e., E
consist of ordered pairs of element of V .1 For such a graph, we define the adjacency
matrix of G, denoted AG, to be the square matrix indexed on the set V , whose
entries are

(AG)v,v′ =

{
1 if (v, v′) ∈ E, and
0 otherwise.

e1

v1

e2

e3 v2

Figure 1. The Fibonacci Graph

Example 2.1. In class we likely discussed the Fibonacci graph, GFib = (V,E),
where

V = {v1, v2}, E = {e1 = (v1, v1), e2 = (v1, v2), e3 = (v2, v1)};
see Figure 1. Once we order the vertices of G as V = {v1, . . . , vn}, we can view
AG as an n× n matrix. The matrix AGFib

is therefore a 2× 2 matrix. In class we
explain that for any k ∈ N the entries of AkG are given by (AkG)v,v′ is the number
of walks of length k from v to v′ of length k, i.e., the number of sequences

(v = u0, u1, . . . , uk+1 = v′)

such that (ui, ui+1) ∈ E for all i. For example, the Fibonacci graph has 5 walks of
length 2:

(v1, v1, v1), (v1, v1, v2), (v1, v2, v1), (v2, v1, v1), (v2, v1, v2),

and we easily check

AGFib
=

[
1 1
1 0

]
, A2

GFib
=

[
2 1
1 1

]
;

so that fact that A2
GFib

has top left entry 2 is a reflection of the fact that there are
two walks from v1 to v1 of length 2. As an aside, we mention that by induction we
can show that

AkGFib
=

[
Fk+1 Fk
Fk Fk−1

]
,

where Fk denote the k-th Fibonacci number.

1 A directed graph allows one to have “multiple edges,” meaning possible multiple edges
associated to the same tuple (v, v′); hence one usually defines a directed graph to be a tuple
G = (V,E, t, h), where V,E are sets — the vertex set and edge set — and t, h are maps E → V

— the tails map and heads map. Much of mathematics requires us to work with directed graphs,
but when a directed graph is simple, one can merely regard E as a subset of V × V . This will
suffice for our needs.
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Forward Path of Length 3 Backward Path of Length 3

Bidirectional Path of Length 3 Path of Length 3

Figure 2. Path Digraphs and the Path Graph of Length 3

Example 2.2. Let n ∈ N. By the forward directed path of length n−1 we mean the
directed graph with vertex set {1, 2, . . . , n}, and edge set {(1, 2), (2, 3), . . . (n−1, n)};
the backward directed path of length n−1 we mean the directed graph with the same
vertex set, but “opposite” edge set {(2, 1), (3, 2), . . . , (n, n−1)}. By the bidirectional
path of length n− 1 we mean the directed graph with the same vertex set, but edge
set that is the union of the forward and backward directed path of length n − 1.
See Figure 2.

A simple graph2 is a directed graph G = (V,E) such that for all v, v′ ∈ V ,
(v, v′) ∈ E implies both (1) (v′, v) ∈ E, and (2) v 6= v′. We typically depict a graph
by drawing a single line segment (or curve) bewteen any pair of vertices v, v′ such
that (v, v′) ∈ E, rather than draw both an arrow from v to v′ and another from v′

to v. We also typically denote the edges by unordered pairs, so the unordered pair
{v, v′} refers to the two directed edges (v, v′) and (v′, v).

Example 2.3. The bidirectional path of length 3 is a graph, and depicted in Fig-
ure 2, where each pair of arrows is replaced by a single line segment. More generally,
the path of length n − 1 is the graph Pn−1 = (V,E) where V = {1, 2, . . . , n}, and
E = {{1, 2}, {2, 3}, . . . {n− 1, n}}.

Example 2.4. Let Pn−1 be the path of length n − 1, and APn−1
its adjacency

matrix. We easily check that Nrod,n = APn−1
. If 3 ≤ i ≤ n − 2, then there are

four walks of length two from i: namely one to i− 2 (namely (i, i− 1, i− 2)), one
to i + 2 (namely (i, i + 1, i + 2)), and two from i to itself (namely (i, i − 1, i) and
(i, i + 1, i)). We similarly determine the number of walks of length two from the
vertices 1, 2, n − 1, and n. This gives a simple formula for A2

Pn−1
, and therefore

for N2
rod,n. One can similary determine AkPn−1

for any fixed k (although the first k

and last k rows are a bit trickier to determine); hence this gives a concrete way to
understand powers of Nrod,n.

3. Some Matrices of Interest

There is another way to understand powers of Nrod,n.

3.1. Another Interpretation of Nrod,n. First, for any n ∈ N, note that

Nrod,n = Sn,1 + Sn,−1,

2Similarly to simple directed graphs, in many mathematical settings simple graphs are inade-

quate for discussions; one typically wants to allow “multiple edges,” and “self-loops,” and at times
the “self-loops” fall into two different types: “whole-loops,” a pair of distinct directed self-loops,

and a “half-loop,” a single self-loop paired with itself.
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where

Sn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 0


, Sn,−1 =



0 0 0 0 · · · 0 0 0 0
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


;

hence Sn,1 is the nonzero part of Nrod,n that lies above the diagonoal, and Sn,−1
the part below. However, Sn,1 has a simple interpretation as “shifting up by one,”
in the sense that for any x = (x1, x2, . . . , xn) ∈ R (which, as always, we think of as
a column vector),

Sn,1 x =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 0


,



x1
x2
x3
x4
...

xn−3
xn−2
xn−1
xn


=



x2
x3
x4
x5
...

xn−2
xn−1
xn
0


Hence the way that Sn,1 operates on a vector x is to move all its components up
by one, and introduce a zero in the bottom component. Similarly we have

Sn,−1 x =



0
x1
x2
...

xn−3
xn−2
xn−1,


so Sn,−1x operates by shifting the components of x down by one and introduces a
0 on the top.

Remark 3.1. Note that Sn,1 is the adjacency matrix of the forward path of length
n− 1 (see Figure 2 and Example 2.4). Similarly for Sn,−1 and the backward path
of length n−1. This gives another way to understand Sn,±1 and their sum, Nrod,n.
The only problem is that in graph theory and Markov chain theory (and symbolic
dynamics, etc.), matrices typically act on row vectors (with the matrix to the right
of the vector), so things look backward when we act on column vectors (with the
matrix to the left of the vector), which is common elsewhere in linear algebra. So
in graph theory and Markov chain theory one notes that[

x1 x2 · · · xn
]
Sn,1 =

[
0 x1 · · · xn−1

]
,
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which makes Sn,1 the “shift to the right by 1” when acting on row vectors, which
more closely resembles is the same way that Sn,−1 acts on column vectors.

3.2. Ring Matrices and Cyclic Shift Operators. There is a simple variant of
Nrod,n that is much easier to understand, namely:

Nring,n =



0 1 0 0 · · · 0 0 0 1
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
1 0 0 0 · · · 0 0 1 0


,

which is just the matrix Nrod,n with a 1 added to the top right and to the bottom
left corners. This matrix has each column sum and each row sum equal to 2; it also
has a cyclic symmetry that makes it a Toeplitz matrix (see the Wikipedia page on
Toeplitz Matrix); we may return to Toeplitz matrices later.

Working with ring matrices is much simpler, because they can be described as a
sum of cyclic shift operators: indeed, for any n ∈ N, note that

(4) Nring,n = Cn,1 + Cn,−1,

where

Cn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0


, Cn,−1 =



0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


.

Similarly to the previous subsection, we have

(5) Cn,1



x1
x2
x3
...

xn−2
xn−1
xn


=



x2
x3
x4
...

xn−1
xn
x1,


and hence Cn,1 has the effect of “cyclically rotating the components of x up by one,”
taking the x1 to be its bottom component, instead of the 0 that Sn,1 introduces.
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Similarly we have

(6) Cn,−1



x1
x2
x3
...

xn−2
xn−1
xn


=



xn
x1
x2
...

xn−3
xn−2
xn−1


3.3. Ring Matrices and the Cn,±1 are Easier to Work With than Rod
Matrices and the Sn,±1. For many computations, it is easier to work with the
Cn,±1 than the Sn,±1, and to see how powers and polynomials of

Nring,n = Cn,1 + Cn,−1,

behave as opposed to
Nrod,n = Sn,1 + Sn,−1.

For example, to interpret N2
ring,n, we have

N2
ring,n =

(
Cn,1 + Cn,−1

)2
which equals

(7)
(
Cn,1 + Cn,−1

)(
Cn,1 + Cn,−1

)
To simiplify such an expression we note that

C2
n,1



x1
x2
x3
...

xn−2
xn−1
xn


=



x3
x4
x5
...
xn
x1
x2,


which just cyclically shifts the components of x by 2. More generally, if for any
k ∈ N, if we set

Cn,k = Ckn,1,

then Cn,k is the operator that cyclically rotates the components of a vector up by
k; similarly for Cn,−k = Ckn,−1. We similarly see that Cn,−1Cn,1x is just x, and
hence

Cn,−1Cn,1 = Cn,1Cn,−1 = In

the identity matrix. Hence all the Cn,±k are invertible, and they all commute;
setting Cn,0 = In (which makes sense, in that shifting by 0 does nothing to a
vector), we conclude that(

Cn,1 + Cn,−1
)2

= Cn,2 + 2In + Cn,−2.

Furthermore, this can be seen as a manifestation of the identity(
x+ x−1

)2
= x2 + 2 + x−2.

Similarly, for any n, k ∈ N, the value of(
Cn,1 + Cn,−1

)k
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can inferred from that of

(
(
x+ x−1

)k
,

which by the binomial theorem equals

x−k
(
1 + x2

)k
= x−k

k∑
m=0

(
k

m

)
x2m =

k∑
m=0

(
k

m

)
x2m−k.

This calculation proves the following proposition.

Proposition 3.2. For any n, k ∈ N,

(8) Nk
ring,n =

k∑
m=0

(
k

m

)
Cn,2m−k.

In other words, (i, j)-th entry of Nk
ring,n is

(
k
m

)
if i−j+k is even and 2m = i−j+k,

and otherwise 0 (hence if m ≤ −1 or m ≥ k + 1 this entry is 0).

Now using adjacency matrices we easily get the following partial description of
powers of Nrod,n.

Corollary 3.3. For any n, k,m ∈ N with 0 ≤ m ≤ k, the (i, i + k − 2m)-th entry

of Nk
rod,n is at most

(
k
m

)
, and equality holds provided k + 1 ≤ i ≤ n − k; and all

other entries of Nk
rod,n are 0.

The proof is to consider the cycle of length n, defined as the graph Cn = (V,E)
with

V = {1, . . . , n}, E =
{
{1, 2}, . . . , {n− 1, n}, {n, 1}

}
,

which is just the path of length n − 1 with one extra edge {n, 1}. We easily see
that Nring,n = ACn , the adjacency matrix of Cn. We have the i-th rows of AkCn

and AkPn−1
are the same when all walks of length k from i in Cn do not traverse

the edge {n, 1}.

3.4. Commutators. If A,B are n×n matrices, the commutator of A and B refers
to the matrix

[A,B] = AB −BA
(hence [B,A] = −[A,B]). We have [A,B] = 0 iff AB = BA iff multiplication by A
and B “commutes.” It is useful to note that [A,B] is “bilinear in A and in B,” in
the sense that

[A1 +A2, B1 +B2] = [A1, B1] + [A1, B2] + [A2, B1] + [A2, B2].

Hence, with Cn,k as above, [Cn,1, Cn,−1] = 0; this commutation shows that

Nk
ring,n =

k∑
m=0

(
k

m

)
Cmn,−1C

k−m
n,1 ,

which leads to (8). Note that Cn,1 = Sn,1 +Ln where Ln is the matrix with a single
nonzero entry in its lower left entry (equal to 1), and similarly Sn,−1 = Cn,−1 +Rn
where Rn = (Ln)T is defined similarly. However, one cannot write Nk

rod,n as

k∑
m=0

(
k

m

)
Smn,−1S

k−m
n,1 ,
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since the commutator

[Sn,1, Sn,−1] = [Cn,1 − Ln, Cn,−1 −Rn]

is not 0; in fact the above commutator equals

[Cn,1, Cn,−1]− [Cn,1, Rn]− [Ln, Cn,−1] + [Ln, Rn],

and we easily see that [Cn,1, Rn] = [Ln, Cn,−1], and hence the above expression
equals [Ln, Rn] (which has a 1 in the top right entry, a −1 in the bottom left).
Hence Sn,1 and Sn−1 “almost commute,” but our formula for Nk

rod,n has corrections

in the top k and bottom k rows (or columns).

Example 3.4. The “Heisenberg uncertainty principle” is often stated as arising
from the fact [

d

dx
, x

]
= 1,

in the sense that for any differentiable f : R→ R we have[
d

dx
, x

]
f =

d

dx
(xf)− x d

dx
f = f + x

df

dx
− x df

dx
= f.

To write this for polynomials of degree at most 4, we consider any such polynomial
as a polynomial of degree at most 5, and note that in usual monomial basis, multi-
plication by x takes x4 to x5, x3 to x4, etc., and hence is represented by S6,1 with
respect to the monomial basis x5, x4, . . . , x, 1. Moreover differentiation of polyno-
mials of degree at most 5 takes x5 to 5x4, x4 to 4x3, etc., and hence is represented
by

D =


0 0 0 0 0 0
5 0 0 0 0 0
0 4 0 0 0 0
0 0 3 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0

 .

We easily verify that [D,S6,1] is the identity matrix except for having its top left
entry equal to 0.

4. The Heat Equation

One of the most fundamental partial differential equations is the heat equation.

4.1. Understanding the One-Dimensional Heat Equation. We imagine a
function u = u(x, t) of two real variables, where x ∈ R represents a space variable,
t ∈ R represents time. Because x ∈ R and not R3, if you are thinking in terms
of three dimensions, you can imagine an “infinitely thin” rod or wire (which is
insulated, so that it doesn’t lose any heat in the middle). For simplicity, we assume:

(1) the rod’s endpoints at x = 0 and x = 1 are held at a constant temperature
1; hence u(0, t) = u(1, t) = 0 for all t > 0;

(2) the rod’s initial temperature profile at t = 0, i.e., f(x) = u(x, 0), is a known
function f : (0, 1)→ R; and
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(3) the rod is composed of a single material of thermal conductivity c > 0, and
hence the classical heat equation is

(9) for all 0 < x < 1 and t > 0,
∂

∂t
u(x, t) = c

∂2

∂x2
u(x, t)

(however, the above equation may not necessarily make much intuitive sense
as written).

In (9), the ∂ symbol means that we take “partial derivatives,” e.g., (∂/∂t)u(x, t)
mean that we hold x fixed and differentiate with respect to t, i.e.,

∂

∂t
u(x, t) = lim

H→0

u(x, t+H)− u(x, t)

H
.

We often use ut to denote ∂
∂tu(x, t) and similarly for ux and uxx (the second partial

derivative in x), so that we write (9) as

(10) for all 0 < x < 1 and t > 0, ut(x, t) = cuxx(x, t).

Example 4.1. The function u(x, t) = sin(πx)e−tcπ
2

solves the heat equation ut =
cuxx and satisfies the boundary conditions u(0, t) = u(1, t) = 0. In this example, as
t→∞, the function u(x, t) decays exponentially in t. It turns out that exponential
decay always holds, although this is not obvious from just looking at ut = cuxx.

To us, (10) is much easier to understand by applying discrete approximations:
for small h,H > 0, Taylor’s theorem implies that for any 0 < x < 1 and t > 0 and
small h,H > 0,

u(x, t+H)− u(x, t)

H
= ut(x, t) +O(H)

and

u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2
= uxx(x, t) +O(h4),

and hence ut = cuxx approximately (to within the O(H), O(h2) terms):
(11)
u(x, t+H)− u(x, t)

k
≈ ut(x, t) = cuxx(x, t) ≈ (c)

u(x+ h, t) + u(x− h, t)− 2u(x, t)

h2

and hence

u(x, t+H) ≈ u(x, t) +
cH

h2

(
u(x+ h, t) + u(x− h, t)− 2u(x, t)

)
and so
(12)

u(x, t+H) ≈ u(x, t) + 2ρ

(
u(x+ h, t) + u(x− h, t)

2
− u(x, t)

)
, where ρ =

cH

h2

This equation should make sense: if at a fixed time, t, the average temperature of
your neighbours is higher than yours, then your temperature at time t+H should
be slightly higher than your temperature at time t, and similarly if the average
temperature is the same or lower.
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4.2. Numerical Solution of the Heat Equation. To solve the heat equation
ut = cuxx subject to the “boundary conditions,” above, namely u(0, t) = u(1, t) = 0
and u(x, 0) = f(x) given, we subdivide the interval [0, 1] into equally spaced points
0 = x0, x1, . . . , xm = 1, so that h = 1/m = xi+1 − xi is independent of i, and we
consider the equally spaced times 0 = t0 < t1 < t2 < . . ., so that H = tj+1 − tj
is independent of j. Then for all 0 ≤ i ≤ m we set U(i, j) = U(h,H; i, j) as
an approximation to u(ih, jH); hence we set U(i, 0) = u(i/m, 0) = f(i/m); for
j = 0, 1, 2, . . . (12) suggests the approximation:

U(1, j + 1)
U(2, j + 1)

...
U(m− 1, j + 1)

 =
(
I(1− 2ρ) + ρNrod,n

)
U(1, j)
U(2, j)

...
U(m− 1, j),


or, in shorthand,

(13) U( · , j + 1) =
(
I(1− 2ρ) + ρNrod,m−1

)
U( · , j),

where

U( · , j) =


U(1, j)
U(2, j)

...
U(m− 1, j).


Remark 4.2. Since Nrod,m−1 = APm−2 , the adjacency matrix of the path of length
m− 2, one can understand the above equation purely graph theoretically. In fact,
the above motivates the usual definition of the so-called “Laplacian” of a graph.

4.3. Some Exact Solutions. One way to test the above numerical approximation
is against exact solutions.

Example 4.3. Let s ∈ N, and u(x, t) = sin(sπx)e−cs
2π2t. Then we easily check

that u(0, t) = u(1, t) = 0 for all t, u(x, 0) = sin(sπx), and ut = cuxx for all x, t ∈ R.

Example 4.4. Fourier analysis lets us write any function f : [0, 1] → R (under
mild conditions, such as f ∈ C0[0, 1], i.e., f is continuous on [0, 1])3 as an infinite
sum

f(x) =

∞∑
s=1

as sin(sπx)

(where
∑
s a

2
s = (1/2)

∫ 1

0
f2(x) dx < ∞)4. Using the previous examples, we solve

ut = cuxx subject to u(0, t) = u(1, t) = 0 and u(x, 0) = f(x) as

(14) u(x, t) =

∞∑
s=1

as sin(sπx)e−cs
2π2t.

Notice that even if the as do not decay very fast, it is easy to see that for each
t > 0, u(x, t) has quickly decaying Fourier coefficients: indeed, we have that

∑
s a

2
s

3 More generally it suffices to have f measurable and
∫ 1
0 f

2(x) dx <∞.
4 In particular, it turns out that as = 2

∫ 1
0 f(x) sin(sπx) dx. However, things can get a bit

subtle... For example, if f(x) = 1 for all 0 ≤ x ≤ 1, then as = 2/(sπ) for s odd, and as = 0 for s

even, and it may not be clear in what sense the infinite sum
∑

s as sin(sπx) converges...
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is finite, and hence |as| ≤ C for all s, for some constant, C. Since for any t > 0

u(x, t) =

∞∑
s=1

As sin(sπx), where As = ase
−cs2π2t,

the Fourier coefficients of u(x, t), with t fixed, satisfy

|As| ≤ Ce−C
′(t)s2 ,

where C ′(t) = cπ2t. Hence the |As| decay exponentially in s2.

4.4. The Weak Maximum Principle. The weak maximum principle gives some
insight into solutions of the heat equation, that should be intuitive but that is not
apparent from its “exact solution” (14).

First, fix some real c, T > 0, and say that a continous function u = u(x, t) defined
for 0 ≤ x ≤ 1 and 0 ≤ t ≤ T satisfies the heat equation ut(x, t) = cuxx(x, t) for all
0 < x < 1 and 0 < t ≤ T .5 We define the time T boundary of this heat equation to
be

(15) BT =
(

[0, 1]× {0}
)
∪
(
{0, 1} × [0, T ]

)
=
{

(x, t)
∣∣∣ 0 ≤ x ≤ 1 and t = 0, or x = 0, 1 and 0 ≤ t ≤ T

}
This is because the temperature u(x, T ), for any 0 < x < 1, should depend only on
its boundary conditions, meaning its initial temperature, u(x, 0), and the tempera-
ture on its endpoints x = 0, 1 for times between 0 and T . (Notice that (0, 1)× T is
not considered part of the “boundary,” at least for the heat equation, even though
these points are part of the boundary of the rectangle [0, 1]× [0, T ].)

Proposition 4.5 (The Weak Maximum Principle). Say that for some reals T, c >
0, there is a continuous function u : [0, 1] × [0, T ] → R that satisfies ut = cuxx for
all 0 < x < 1 and 0 < t ≤ T . let BT be as in (15). Let

M = max
(x,t)∈BT

u(x, 0).

Then for all (x, t) ∈ [0, 1]× [0, T ] we have u(x, t) ≤M .

It should make intuitive sense that if the initial temperature and endpoint tem-
peratures of a rod (up to any time T ) are all at most M , then the temperature in
the interior of the rod (up to time T ) should be at most M . Since −u satisfies the
same heat equation, the above proposition implies that if

M ′ = min
(x,t)∈B

u(x, 0),

then similarly u(x, t) ≥M ′ throughout the rectangle [0, 1]× [0, T ].

Proof. If not, then u(x, t) > M for some (x, t) ∈ (0, 1) × (0, T ]. It follows that for
ε > 0 sufficiently small,

v(x, t) = u(x, t) + ε
(
x2 − t

)
has a value that is larger than its maximum over BT ; pick such an ε > 0. It
follows that the maximum of v on [0, 1] × [0, T ] is attained at a non-boundary
point, (x0, t0), and hence 0 < x0 < 1 and 0 < t0 ≤ T . Since v(x0, t) ≤ v(x0, t0)

5 To make sense of ut = cuxx holding at 0 < x < 1 and t = T , we define ut(x, T ) to be the
left partial derivative in t of u, i.e., based on the value of u(x, t) with t ≤ T .
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for t < t0, we have vt(x0, t0) ≥ 0. Since v(x, t0) has a local maximum at x = x0,
we have vxx(x0, t0) ≤ 0 (as well as vx(x0, t0) = 0, which we don’t need). Hence at
(x0, t0) we have

(16) vt − cvxx ≥ 0.

But we easily see that

vt = ut − ε, vxx = uxx + 2ε,

and so

vt − cvxx = ut − cuxx − ε− 2cε = −(1 + 2c)ε < 0,

which contradicts (16). �

We can get far more insight into the heat equation with some extra work. In
particular we can prove the strong maximum principle, which states that in the
above proposition, if u(x, t) = M for any 0 < x < 1 and any 0 < t ≤ T , then
u(x, t) = M throughout [0, 1]× [0, T ].

4.5. Stability and Instability of Numerical Schemes. When you solve the
heat equation, presumably you want to take H,h→ 0 and apply (13) or (12) with
ρ = cH/h2 to approximate the solution. You might guess that as h,H → 0, it is
not a good idea to choose ρ = cH/h2 in (13) or (12) to be large. Namely, since

‖I(1− 2ρ) + ρNrod,m−1‖∞ = |1− 2ρ|+ 2ρ,

if ρ > 1/2, then this matrix has norm > 1, and you might expect bad things to
happen as t → ∞ in the numerical approximation, i.e., as you take successively
higher powers of I(1− 2ρ) + ρNrod,m−1 applied to the vector U( · , 0) representing
the time t = 0 values of the temperature.

Example 4.6. For ρ = 1, we have |1− 2ρ|+ 2ρ = 3. Hence the k-th power of

(17) I(1− 2ρ) + ρNrod,m−1

should amplify relative errors by at worst 3k. Since double precision has relative
error at worst (roughly) 2−53, then when 3k2−53 is small, then we shouldn’t expect
relative errors to be too bad. So consider the equation ut = uxx for 0 < x < 1,
t > 0, subject to boundary conditions

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx).

Consider h = 0.1 = 1/10, so H = ρh2 = 1/100. Since 3k = 253 for k =
53 log(2)/ log(3) = 33.4392..., we might expect some trouble with double preci-
sion at around 33 or 34 iterations of (17), which corresponds when t is roughly
33H = 0.33 or 34H = 0.34. Indeed, this seems to be (roughly) the case; see
Figure 3.

We have included the MATLAB code we used to generate the plots of Figure 3
in the file sine intially.m in Appendix A.

For a fuller discussion of the above, see Lectures on Advanced Numerical Anal-
ysis, by Fritz John.
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Figure 3. The Approximation to ut = uxx with m = 10, ρ = 1

4.6. A Higher Order Heat Equation Approximation. It is not hard to guess
which value of ρ will give the best results, when taking h,H → 0 in the above
numerical schemes: by Taylor’s theorem we have

u(x+ h, t)− 2u(x, t) + u(x− h, t) = h2uxx(x, t) + (h4/12)uxxxx(x, t) +O(h6)

assuming that u is sufficiently differentiable, and

u(x, t+H)− u(x, t) = Hut(x, t) + (H2/2)utt(x, t) +O(H3).

Moreover the equation ut = cuxx, for u sufficiently differentiable, implies

utt = c
(
uxx
)
t

= c
(
ut
)
xx

= c
(
cuxx

)
xx

= c2uxxxx.

It follows that

u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2

= uxx(x, t) + (h2/12)uxxxx(x, t) +O(h4),

and

u(x, t+H)− u(x, t)

H
= ut(x, t)+(H/2)utt(x, t)+O(H2) = cuxx(x, t)+(H/2)c2uxxxx(x, t)+O(H2).

Hence

c
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
−u(x, t+H)− u(x, t)

H
= c(h2/12−c(H/2))uxxxx(x, t)+O(h4+H2).
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Hence the approximation (11), which sets the left-hand-side of the above to being
≈ 0, becomes a higher order scheme when h2/12 = cH/2, i.e., when ρ = cH/h2 =
1/6.

4.7. Gaussians and the Heat Equation. We mention, in passing, the relation
between Gaussian distributions and the heat equation.

One message about solving for the heat equation is that for numerically stable
solutions, we need to take H = ρh2, so the time step, H, is of order h2, which is
much smaller than h as h→ 0. There is a reason for this: if we look at

Nk
ring,n =

k∑
m=0

(
k

m

)
Cmn,−1C

k−m
n,1 ,

we see that although this matrix is nonzero at the (i, j)-th entries with |i−j| ≥ k+1,
this matrix is concentrated in a much smaller range, namely for |i−j| of size roughly

O(
√
k) rather than k. One can make this precise using the “central limit theorem,”

which implies that the numbers
(
k
m

)
/2k (whose sum equals 1, since we divide by k)

look like a Guassian distribution where, in rough terms, m is within order
√
k of

k/2.
Another way to see Gaussian’s arise from the heat equation is that if one con-

siders ut = cuxx where x ∈ R, one solution to this equation is

u(x, t) =
1√

4πct
e−x

2/(4ct).

This solution tends to the “Dirac delta function” as t → 0, and it follows that if
u(x, 0) = f(x), where f(x) satisfies some appropriate boundedness conditions (for
|x| large), then there is a solution

(18) u(x, t) =

∫ y=∞

y=−∞
f(y)

1√
4πct

e−(x−y)
2/(4ct) dy,

and that solution is the unique solution that satisfies appropriate boundedness
conditions.

Yet another connection to Gaussians is when we solve the above heat equation,
either for x ∈ (0, 1) or all x ∈ R, by the use of a stochastic process, specifically a
Brownian motion. Roughly speaking, (18) can be viewed as saying that to com-
pute u(x, T ) we start a Brownian motion (depending on c) from (x, t), running it
“backwards in time,” yielding a function Bω : [0, T ] → R; with Bω(0) = x; for the
appropriate Brownian motion (depending on c), we have

u(x, T ) = Eωf(Bω(T )) = Eωu(Bω(T ), 0).

Similarly, if we solve the heat equation over 0 < x < 1, then get a similar formula,
where we stop the Brownian motion Bω(t) at the first time (if it exists) t = t0 such
that Bω(t0) = 0, 1, and for such ω we substitute u(Bω(t0), T − t0) (the temperature
at an endpoint) for f(Bω(T )) = u(Bω(T ), 0). For this stopping time t0 = t0(ω)
(where t0(ω) = T if 0 < Bω(t) < 1 for all t ≤ T ), we have the more general formula

u(x, T ) = Eωu
(
Bω
(
t0(ω)

)
, T − t0(ω)

)
.
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4.8. Rods of Varying Thermal Conductivity. If a rod is made of materials
that vary in x, then the classical heat equation is

ut = (cux)x = c′(x)ux + c(x)uxx

where the thermal conductivity, c = c(x), is now a function of x. One can design
an approximation scheme in this case; one might use a centered scheme for ux,
i.e., ux(x, t) ≈ (u(x + h, t) − u(x − h, t))/2h, since this has error O(h2) and the
three-point approximation for uxx already uses these values of u.

Another case—which is easy to program—is where c(x) is piecewise constant,
and the discontinuities of c(x) occur at a few grid points, say that xi for a few
values of 1 ≤ i ≤ m − 1. When c(x) is discontinuous at x = xi, one imposes
that c(x)ux(x, t) is continuous across x = xi, in other words this value on the left,
namely c(x−)ux(x−, t), must equal this value on the right, namely c(x+)ux(x+, t).
In other words, if c(x) for x < xi and near xi is c1, and is c2 for x near xi with
x > xi, then we insist that

c1ux(xi−, t) = c2ux(xi+, t).

Hence we could numerically we should impose

c1
(
u(xi, t)− u(xi − h, t)

)
= c2

(
u(xi + h, t)− u(xi, t)

)
,

and so impose

u(xi, t) =
c1u(xi − h, t) + c2u(xi + h, t)

c1 + c2
;

if xi±1 = xi ± h, then we impose

(19) u(xi, t) =
c1u(xi−1, t) + c2u(xi+1, t)

c1 + c2
.

Hence to numerically update u( · , t + H) from u( · , t), assuming that c(x) is
piecewise constant, between grid points, and that these grid points aren’t consective,
we can use the usual method away from the discontinuities in c(x), i.e.,

(20) u(xi, t+H) = u(xi, t)(1− 2ρi) + ρi
(
u(xi+1, t) + u(xi−1, t)

)
whereever c(xi−1) = c(xi) = c(xi+1), with ρi = c(xi)H/h

2, and afterwards, when
c(x) is discontinuous at x = xi, we set
(21)

u(xi, t+H) =
c1u(xi−1, t+H) + c2u(xi+1, t+H)

c1 + c2
, c1 = c(xi−1), c2 = c(xi+1)

(since u(xi±1, t+H) will be been determined earlier, given that c(x) is continuous
at xi±1, i.e., we don’t have two discontinuities at consecutive grid points).

[Exercise: Design a numerical experiment that tests this scheme numerically
versus one where c(x) is a smooth approximation of a piecewise-constant function.]

Exercises (Preliminary Draft)

(1) Consider the numerical approximation to the heat equation

ut = uxx, 0 < x < 1, t > 0

subject to

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx).
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[Hence the exact solution is u(x, t) = sin(πx)e−π
2t.] In Example 4.6, it was

shown that withm = 10 and ρ = 1 (hence h = 1/m, H = ρh2 = ρm2), using
(13) to approximate u(x, T ) for all x ∈ [0, 1] becomes problematic around
T = 0.34. (For these exercises you can use the software in Appendix A if
you like.)
(a) Let ρ = 1 and m = 20. Mimick Example 4.6 in this case: plot some

value of T for which the computation of u(x, T ) becomes problematic
due to errors in double precision. If the number of iterations is k, how
does (|1− 2ρ|+ 2ρ)k compare with 253?

(b) Same problem as (a), for ρ = 2/3 and m = 10.
(c) Let m = 10, ρ = 1/3, 1/4, 1/6, 1/8, 1/10, and T = 1. How does the ex-

act solution of u(x, T ) = u(x, 1) compare with the numerical solution?
For which values of ρ is the numerical solution smaller, and for which
is it bigger?

(2) Consider

ut = uxx, 0 < x < 1, t > 0

subject to

u(0, t) = u(1, t) = 0, u(x, 0) = sin(πx).

[Hence the exact solution is u(x, t) = sin(πx)e−π
2t.] Notice that standard

trigonometric identities show that

sin(πx+ πh) + sin(πx− πh) = 2 cos(πh) sin(πx).

(a) Show that in exact computation, if U(i, 0) = sin(iπ/m), then for any
ρ > 0, in (13) we have

U( · , j) =
(

1 + 2ρ
(
cos(πh)− 1

))j
U( · , 0)

(b) Consider the approximation one gets for u(x, 1) with 0 ≤ x ≤ 1 with
the above scheme. One therefore takes H = ρh2, and, assuming that
H = 1/M for some integer, M , we get the approximation to u(x, 1)
for x = 1/m, 2/m, . . . , (m− 1)/m to be

U( · , 1/H) =
(

1 + 2ρ
(
cos(πh)− 1

))1/(ρh2)

U( · , 0).

Show that for ρ fixed, as h→ 0,(
1 + 2ρ

(
cos(πh)− 1

))1/(ρh2)

= e−π
2

+O(h2).

(c) Find the function of ρ, g(ρ), such that(
1 + 2ρ

(
cos(πh)− 1

))1/(ρh2)

= e−π
2+g(ρ)h2+O(h4).

For what values of ρ is g(ρ) positive? Negative? Zero? (This may
explain your answer to Exercise 1(d).)

(d) Show does the ρ where g(ρ) = 0 compare with the ρ found in Subsec-
tion 4.6 that gives a higher order method?
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(3) Consider two different rods of length 1, each made of 50% chewing gum
and 50% metal,6 where
(a) the first rod has chewing gum on the outside, and metal on the inside;

model this by setting

c1(x) =

{
2 if 1/4 ≤ x ≤ 3/4, and
1 otherwise (i.e., 0 ≤ x ≤ 1/4 or 3/4 ≤ x ≤ 1);

and
(b) the second rod has metal on the outside, and chewing gum on the

inside; model this by setting

c2(x) =

{
1 if 1/4 ≤ x ≤ 3/4, and
2 otherwise (i.e., 0 ≤ x ≤ 1/4 or 3/4 ≤ x ≤ 1).

Plot the temperature profile of the two rods against each other, i.e., of
u(x, T ) for various values of T , taking h,H → 0 in such a way that ρmax =
2h/H2 is less than 1/2. Is one rod always warmer than the other in the
middle, i.e., at x = 1/2 ?

(4) Exercise 4 will appear here.

(5) Exercise 5 will appear here.

Appendix A. Some MATLAB Code

This section contains some MATLAB code to solve the heat equation ut = uxx
on 0 < x < 1 and t > 0, where u(x, 0) = sin(πx) and u(0, t) = u(1, t) = 0.

% April 3, 2024: Experiment on initial condition sin(pi x)

% Joel Friedman, CPSC 303, UBC

% the following function numerically approximates a solution to:

% u_t = u_xx for 0 < x < 1, and t>0

% subject to:

% u(0,t)=u(1,t)=0, and u(x,0) = sin( pi x )

%

% It takes three inputs: m (an integer), and rho,T (two positive reals)

%

% It uses the standard way to solve the heat equation (see the course handout),

% using equally spaced grid points 0 = x_0, x_1, ..., x_m = 1,

% (so h = x_{i+1}-x_i = 1/m for all i, and x_i = i/m)

% and equally spaced time grid points 0 = t_0,t_1,..., where

% H = t_{i+1}-t_i satisfies rho = H/h^2, so H = rho m^2

%

% Hence U(i,j) approximates u( (i-1) h , (j-1) H ), is given by

% U(i,j+1) = (1-2 rho) U(i,j) + rho ( U(i+1,j) + U(i-1,j) )

%

6 This experiment was a high school science project of mine supervised by Mr. Robert Bruce

Horton, Evanston Township High School, with encouragement from my dad. The results of this
experiment can be proven rigorously by rescaling the x variable, so that each heat profile satisfies

ut = uxx with two conditions at the material interfaces; one compares each to ut = uxx (without

conditions), and scaling back. For c1 = 1 and c2 = 2, there is therefore no scaling at x with

c(x) = 1, and one scales x by
√

2 where c(x) = 2; numerically one can observe this, noting that

the ratio of the two profiles near x = 0 for small time is roughly
√

2.
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% or, equivalently, we iterate on:

%

% U_new(i) = (1-2 rho) U_curr(i) + rho ( U_curr(i+1) + U_curr(i-1) )

% for i=2,...,m-1

% U_new(1) = U_new(m+1) = 0

%

% and then set U_curr to U_new

%

% this function does two things: (1) it plots u(.,T) as a broken line, based

% on the values u(x_0,T), u(x_1,T), u(x_2,T), ... , u(x_m,T) in blue, with

% the exact solution in red, and (2) it returns the vector of u values above.

% Note that if T is not an integer multiple of H, it reports these values for

% T replaced by H floor(T/H), i.e., the largest multiple of H less than T

function U_curr = first_sine(m,rho,T) % run heat eq u_t = u_xx, on [0,1]

% with sin(pi x) as initial cond

% Hence the time grid points are 0,H,2H,3H,... where H = rho / m^2

%

% In case T/H = T m^2 / rho is not an integer, we give

time_iters = floor(T * m^2 / rho) % the number of iterations

T_actual = time_iters * rho / m^2 % the actual time we stop

% Here are the vectors for u(x_0,iH), ... , u(x_m,iH)

U_curr = zeros(1,m+1);

x = zeros(1,m+1);

for i=1:m+1

U_curr(i) = sin( (i-1) * pi / m);

x(i) = (i-1)/m;

end

% These vectors will be used to plot the exact solution

xfine = zeros(1,1001);

U_actual = zeros(1,1001);

for i=1:1001

U_actual(i) = sin( (i-1) * pi / 1000); % this is the initial condition

xfine(i) = (i-1)/1000;

end

U_actual = U_actual * exp(-T_actual * pi^2); % The exact u(x_i,T_actual)

% This sets u(1)=u(m+1)=0, which should be done regardless of the initial

% condition u

U_curr(1) = 0; U_curr(m+1)=0;

% This is the vector used to compute the new values

U_new = zeros(1,m+1);

for j= 1 : time_iters

U_new(1)=0; U_new(m+1)=0;
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for i=1:m-1

U_new(i+1) = (1 - 2 * rho) * U_curr(i+1) + rho * U_curr(i) + rho * U_curr(i+2);

end

U_curr = U_new;

end

hold off;

plot(x,U_curr,’Color’,’blue’);

hold on;

plot(xfine,U_actual,’Color’,’red’);

title([ ’m = ’ num2str(m), ’, rho = ’ num2str(rho), ’, T (actual) = ’ num2str(T_actual) ] , ’FontSize’, 20);
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