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orate upon and/or correct in class. For those not in CPSC 303: use this material
at your own risk. . .

The following is a list of skills you should have for the final exam. It is currently
a work in progress: more material will be added.

NOTE:

(1) skills listed in green will NOT be examinable this year (2024).
(2) skills listed in red represent modifications of skills added or

edited the week of April 15-19.

(1) Intro to ODE’s, Numerical Methods for ODE’s:
(a) Group Homework 1, Problem 2: Know how to build deriva-

tive approximation schemes using linear algebra and Taylor’s theorem.
(Later: understand that transposes of Vandermonde matrices show up
here.)

(b) Group Homework 1, Problems 3,4: Solve separable ODE’s (e.g.,
y′ = h(t)g(y)), including those with initial values. Know that some
ODE’s, such as y′ = y2 (under certain initial conditions), should have
solutions y(t) that tend to infinity as t approaches some finite time.
Know that if y′ = f(y) and z′ = g(z) have the same initial condition
(i.e., y(t0) = y0 and z(t0) = y0), and if f(y) ≤ g(y) for y near y0, then
z(t) ≥ y(t) for all t near t0 with t > t0.

(c) Know that the equation y′ = f(t,y) with initial condition y(t0) = y0

has a solution for t near t0 if f is continuous; moreover, this local
solution is unique if f is differentiable in y near y0.
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(d) Know that some ODE’s don’t have unique solutions (not even locally),
such as y′ = |y|1/2.

(e) Know all solutions to y′ = |y|1/2.
(f) Know how to convert the ODE z′′ = g(t, z, z′) into a vector ODE

y′ = f(t,y) (namely by setting y = (z′, z)).
(g) Know that Newton’s law Fij = −Fji implies the conservation of mo-

mentum
∑

i mivi =
∑

i miẋi.
(h) Know how to solve an equation with constant coefficients, (d/dt −

r1)(d/dt − r2)y = 0 as y(t) = C1e
r1t + C2e

r2t if r1 ̸= r2, or y(t) =
C1e

r1t + C2te
r1t if r1 = r2.

(i) Know that the exact solution to y′ = Ay and y(t0) = y0 is y(t) =
eA(t−t0)y0, where eA(t−t0) is obtained using the power series ex =
1 + x+ x2/2 + · · · , with A(t− t0) in place of x.

(j) Group Homework 2, Problem 2: know that MATLAB has a
function that computes eA for a matrix, A, and that eA is given by∑∞

i=0 A
i/i!.

(k) Group Homework 2, Problem 3: know that under Euler’s method,
y′ = |y|1/2 will numerically report very different values for y(2) given
y(t0) = 0 as opposed to y(t0) = 10−20. (Due to the non-uniqueness of
the solution near t = 0.)

(l) Group Homework 2, Problem 4: know that two time translations
of a function yield another time translation, and two time reversals of
a function yield a time translation; know how certain types of ODE’s
behave under time translation and reversal.

(m) Group Homework 3, Problems 3 and 4: In exact arithmetic,
Euler’s method for y′ = |y|1/2 with y0 = −h2 takes you to y1 = y2 =
· · · = 0, but this may not happen in double precision when h is not
a power of (1/2). Similarly for y0 values that in exact arithmetic
eventually take you to yi = yi+1 = · · · = 0.

(n) Know that the infinite sum I + A + A2/2 + . . . converges to eA of
matrices converges in the sense of norms. Know that ∥A∥∞ equal
the largest sum of the absolute values of elements of a row (e.g., for
A = [a, b; c, d], ∥A∥∞ equals max(|a| + |b|, |c| + |d|) (see 01 26 notes,
and the rigorous proof in Homework 6, Problem 3).

(o) Homework 5, Problems 2,3: If U ′ = u, then he central force prob-
lem mẍ = −mu(∥x∥)x/∥x∥ has energy (1/2)m∥ẋ∥2+mU(∥x∥) (which
is independent of time). This can be used to test the numerial solu-
tion. For Newton’s law u(r) = 1/r2, U(r) = −1/r, the (Explicit)
Trapezoidal method does much better, for a given step size, than Eu-
ler’s method.

(2) Recurrence Relations (and the ODE Analog), Normal and Sub-
normal Numbers (in Double Precision):
(a) Know how to solve to solve recurrence relations (σ−r1)(σ−r2)xn = 0,

e.g., the Fibonacci recurrence relation (σ2 − σ− 1)xn = 0. Know that
when writing the above three-term recurrence as yn+1 = Ayn with
yn = (xn+1, xn), then A will have eigenvectors (r, 1) where r = r1, r2.

(b) Group Homework 4, Problem 2: The explicity trapezoidal method
does better than Euler’s method at solving y′ = Ay and y(t0) = y0;
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in the case there, to report y(1) given y′ = y and y(0) = 1 (so y(1) =
e), Euler’s method reports (1 + 1/N)N and trapezoidal reports (1 +
1/N +1/(2N2))N , and one can demonstrate that the latter is a better
approximation of e.

(c) You should know how to solve recurrence relations (σ−r1)(σ−r2)xn =
0, and understand the analogy with solving (d/dt−r1)(d/dt−r2)y = 0
from ODE’s above.

(d) Group Homework 4, Problems 3,4, Group Homework 5,
Problems 4: You should know how to solve homogeneous ODE’s
with constant coefficients, and homogeneous linear recurrences with
constant coefficients; how to solve inhomogeneous equations of the
form (d/dt− r1)(d/dt− r2)y = poly(t) (namely you solve the homoge-
nous equation and “guess” y(t) is a polyonmial of the same degree1;
similarly how to solve (σ − r1)(σ − r2)xn = poly(n)2. Also Group
Homework 5, Problem 5: know what happens when r1 = r2, and
that this is the same as the limit when r1 is fixed and r2 → r1.

(e) Group Homework 4, Problem 5: You should know that recurrence
equations with a solution xn which tends to 0 in exact arithmetic may
cycle due to finite precision; the case at hand is xn+2 = (3/2)xn+1 −
(1/2)xn, which cycles at integer multiples of 2−1074.

(f) You should know how normal and subnormal numbers are stored; in
particular, you should know that 2−1074 is the smallest positive sub-
normal number, and you should understand the lack of precision when
working with subnormal numbers. You should know what are the
smallest and largest normal numbers in double precision (2−1022 and
(2− 2−52)21023, and that a larger number is declared to be Inf.

(3) Interpolation (including Condition Number)
(a) Group Homework 6, Problems 2,5: Know what happens in mono-

mial interpolation on (xi, f(xi)) for i = 0, 1, 2, when x0, x1, x2 tend to
each other; know how the relationship with derivative approximation
schemes (e.g., [A&G], Chapter 14). Know that the condition number
is order 1/ϵ2 when the differences between the xi are proportional to ϵ.
Group Homework 7, Problem 6: know that this condition number
can change when passing to an equivalent system.

(b) Group Homeowrk 7, Problems 2,3: Know that if p is linear
function with p(2), p(2 + ϵ) fixed, or a quadratic function with with
p(2), p(2 + ϵ), p(2 + 2ϵ) fixed, then for any fixed c, and ϵ → 0, then
p(2+ cϵ) is independent of ϵ (and know how to prove this); know that
as ϵ → 0, Lagrange interpolation is far more accurate than monomial
interpolation.

(c) Group Homework 6, Problems 3,4: Know how to compute ∥A∥∞
of a matrix, and how to find x (with entries ±1) such that ∥Ax∥∞ =
∥A∥∞∥x∥∞.

1This only works when r1, r2 are different from 0, but the examples this year avoided this case.
If one of r1, r2 is 0, you have to guess a polynomial of one degree higher, and if r0 = r2 = 0, you

have to guess a polynomial of two degrees higher.
2This only works when r1, r2 are different from 1, but the examples this year avoided this case.

If one of r1, r2 is 1, you have to guess a polynomial of one degree higher, and if r0 = r2 = 1, you

have to guess a polynomial of two degrees higher.
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(d) Group Homework 7, Problem 4,5: For any A, know how to find
xapprox,xtrue, or equivalently bapprox = Axapprox and btrue = Axtrue,
so that the relative error of xapprox,xtrue is κ∞(A) (i.e., the ∞-
condition number, i.e. ∥A∥∞∥A−1∥∞) time that of bapprox,btrue.

(e) Group Homework 8, Problem 2: Know how the formula for di-
vided differences p[x0, x1, x2] when p is a quadratic polynomial.

(f) Know how to compute f [x0, . . . , xn] in quadratic time in n; know the
“generalized mean-value theorem,” f [x0, . . . , xn] = f (n)(ξ)/n! for some
ξ contained in any interval containing x0, . . . , xn.

(g) Know that if f is interpolated at x0, . . . , xn by a polynomial of degree
p(x) (of degree at most n), then (the “error in polynomial interpolation
theorem” states that)

f(x)− pn(x) =
f (n+1)(ξ)

(n+ 1)!

n∏
i=0

(x− xi)

where ξ lies in any interval containing x0, . . . , xn and x (see class 03/11
or [A&G] bottom page 314); know how Taylor’s theorem results from
this. (Class 03/11)

(h) Know that Lagrange interpolation yields the formula

f [x0, . . . , xn] =

n∑
i=0

f(xi)
∏
j ̸=i

1

xj − xi
.

(i) Know the that (see the table on page 312 of [A&G]):
(i) Monomial interpolation takes O(n3) flops to construct, and O(n)

evaluation cost (per evaluation);
(ii) Lagrange interpolation takes O(n2) flops to construct, and O(n)

evaluation cost (per evaluation);
(iii) Newton interpolation takes O(n2) flops to construct, and O(n)

evaluation cost (per evaluation).
(4) Splines These refer to functions whose values at A = x0 < x1 < . . . <

xn = B are given, often as f(x0), f(x1), . . . , f(xn).
(a) Know that minimizing Energy1(u) =

∫
(u′(x))2 dx (or Length(u) =∫ √

1 + (u′(x))2 dx gives rise to a piecewise linear function (subject to
u(xi) given for i = 0, 1, . . . , n). Hence the energy is not miniminized
at a function in C1[A,B].

(b) By contrast, minimizing Energy2(u) =
∫
(u′′(x))2 dx gives a piecewise

cubic function that is in C2[A,B] (i.e., it is twice differentiable at the
xi).

(c) Group Homework 8, Problem 3: know how minimizing
Energy2,w(u) =

∫
w(x)(u′′(x))2 dx gives rise to cubic splines when

w(x) is constant, and to a more generally formula when w is not con-
stant.

(d) Group Homework 9, Problem 2: know that a cubic spline is not
generally three times differentiable across the x0, . . . , xn.

(e) The cubic splines over A = x0 < x1 < . . . < xn = B are described as
v(x) which is piecewise cubic polynomials: si(x) for xi ≤ x ≤ xi+1,
for i = 0, . . . , n− 1, si(x) = ai + bi(x− xi) + ci(x− xi)

2 + di(x− xi)
3,

hence 4n parameters. Enforcing s(xi) = f(xi), s(xi+1) = f(xi+1) and
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that v′, v′′ is continuous across x1, . . . , xn−1 gives 4n − 2 parameters,
leaving 2 parameters.

(f) The Energy2,w(u) =
∫
w(x)(u′′(x))2 dx minimizer occurs at the cubic

spline v where v′′(x0) = v′′(xn) = 0, the natural spline; these two
conditions determine a unique cubic spline.

(g) For each i, there are formulas for ai, bi, di in terms of
f(xi), f(xi), ci, ci+1, hi, where hi = xi+1 − xi. One can solve for
c = (c1, . . . , cn−1) (where c0 = cn = 0) by a matrix equation. For
h1 = · · · = hn−1, the matrix equation is (2I + (1/2)Nrod,n−1)c = 3Φ,
where the i-th component of Φ is f [xi−1, xi, xi+1], and Nrod is the tri-
diagonal matrix with 0’s on the diagonal and 1’s on all the off-diagonal
entries (adjacent to the diagonal).

(h) The matrix ∥Nrod,n−1∥∞ ≤ 2 (equal when n ≥ 3), and so one can solve
for c as (3/2)(I−N/4+(N/4)2−· · · )Φ. Since ∥(N/4)k∥∞ ≤ (1/2)k, the
above infinite series converges like a geometric series, when measuring
with the ∞-norm.

(i) The matrix Nrod,n = APn−1 , the adjacency matrix of Pn−1, the path
of length n− 1; this can be used to compute powers of Nrod,n.

(j) Another way to understand powers of Nrod,n is to write Nrod,n =
Sn,1+Sn,−1, where Sn,1, Sn,−1 are the “upward shift” and “downward
shift” matrices. (These are also the adjacency matrices of directed
path graphs.) It is easier to consider powers of the closely related
Nring,n = Cn,1 + Cn,−1, where Cn,1, Cn,−1, which are “cyclic shifts”
up and down by 1; these cyclic shifts are inverses of each other, and
give a simple formula for powers of Nring,n. Also Nring,n = ACn

, the
adjacency matrix of Cn, the cycle of length n.

(k) The reason that Nrod,n = Sn,1+Sn,−1 doesn’t give a simple k-th power
formula is that Sn,1, Sn,−1 don’t commute. (Although [Sn,1, Sn,−1] has
all but two of its entries 0.)

(l) Group Homework 10, Problem 2: even if the h1, h2, . . . , hn−1 are
not all equal, we still get a system (2I+(1/2)N)c = 3Φ as above with
∥N∥∞ ≤ 2, and so a similar expansion holds.

(5) The Heat Equation
(a) Solving the heat equation ut = cuxx and u(0, t) = u(1, t) = 0 by

discrete approximation gives u(x, t + H) = (1 − 2ρ)u(x, t) + ρ(u(x +
h, t)+u(x−h, t) where ρ = cH/h2; in other words, with x-step size h,
and t-step size H, we get U(i, j) approximates u(ih, jH) and U( · , j+
1) = (1− 2ρ+ ρNrod,n−2)U( · , j).

(b) If we fix ρ > 1/2 and take h → 0 and ρ = cH/h2 (or H = ρh2/c), this
method becomes unstable, roughly when (|1− 2ρ|+ 2ρ)k2−53 is close
to 1.

(c) The above method becomes a higher order method (of error O(h4)
instead of O(h2) when ρ = 1/6.

(d) The fact that ρ = 1/6 yields more accurate results can also be seen by

looking at u(x, t) = sin(πx)e−π2ct. For the numerical approximation
u(x, t+H) = (1−2ρ)u(x, t)+ρ(u(x+h, t)+u(x−h, t)) gives u(x,Hm) ≈
sin(πx)(1−2ρ(1−cos(πh)))m for fixed ρ, which is within O(h4) exactly
when ρ = 1/6 (for other ρ, this is accurate to within O(h2).
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(6) More on ODE’s
(a) Stiff ODE’s: The solution to y′ = ay with a < 0 is decreasing in

time, but with Euler’s method we get ym = (1 + ah)my0 which is
only decreasing when −1 < ah < 0. Hence the solution with Euler’s
method is “unstable” unless h > −1/a.

(b) Stiff systems of ODE’s: In solving y′ = Ay, the eigenvalues of A can
similarly make Euler’s method unstable for eigenvalues λ with negative
real part unless |λh+ 1| ≤ 1.

(c) A second type of stiffness occurs for y′ = Ay with A has complex
eigenvalues. This problem shows up in x′′ = −x, whose solutions
are linear combinations of sin(t), cos(t), but the eigenvalues of A =
[0,−1; 1, 0] are λ = ±

√
−1. For stability one needs |

√
−1h + 1| ≤ 1

or
√
1 + h2 ≤ 1, which is impossible. Said otherwise, Euler’s method

with step size h increases the invariant (x′)2+x2 by a factor of
√
1 + h2

per iteration of Euler’s method.
(d) There are many higher order Runga-Kutta methods, which generalize

Euler’s method, including a popular method that is accurate to order 4.
However, higher order methods tend to have worse stability properties,
in the above sense for Euler’s method with stiff ODE’s.

(e) A system of the form z′′ = g(z) is time reversible, so if z(t) is a
solution, then so is z(T − t) for any t. This gives another way to check
numerical solutions. So solve z′′ = g(z) by writing it as y′ = f(y)
with y = (z′, z): if you solve y′ = f(y) with y(0) = (z′0, z0), then
solving the same equation with y(0) = (−z′(T ), z(T )) should give
y(T ) = (−z′0, z0).
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