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The following problems are sample final exam problems, largely based on the
homework. There are a lot on material after the midterm, i.e., starting with divided
differences, but some cover earlier material.

(1) Answer true or false:
(a) In the central force problem, mẍ = −u(∥x∥)x/∥x∥, the momentum

mv = mẋ is conserved.
(b) In the central force problem, mẍ = −u(∥x∥)x/∥x∥, the energy

(1/2)m∥v∥2+U(∥x∥) is conserved, where v = ẋ and U satisfies U ′ = u.
(c) The central force problem, mẍ = −u(∥x∥)x/∥x∥ is reversable in time,

i.e., if x(t) is a solution, then x(T − t) is also a solution.
(d) If A is a 2×2 matrix, then there exists an x each of whose components

are all either 1,−1, such that ∥Ax∥∞ = ∥A∥∞∥x∥∞.
(e) If A is a 2× 2 matrix, and x ̸= 0 satisfies ∥Ax∥∞ = ∥A∥∞∥x∥∞, then

all components of x are either 1,−1.
(f) We have an algorithm for monomial interpolation on n points that

takes order n2 floating point operations to form the polynomial and
evaluate it at one point.

(g) We have an algorithm for Lagrange interpolation on n points that
takes order n2 floating point operations to form the polynomial and
evaluate it at one point.

(h) We have an algorithm for Newton’s form of interpolation (i.e., via
divided differences) on n points that takes order n2 floating point op-
erations to form the polynomial and evaluate it at one point.

(i) There exist functions f : R → R such that f [0, 1, 2] ̸= f [0, 2, 1].
(j) MORE EXERCISES MAY APPEAR

Note: for a cubic spline v(x) with abscissae A = x0 < · · · < xn = B
that approximates f(x), the following formulas are useful regarding the
piecewise cubic spline si(x) = ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3

satisfies (this piece is for v on [xi, xi+1]:

ai = f(xi), bi = f [xi, xi+1]−
hi

3
(2ci + ci+1), di =

ci+1 − ci
3hi

1
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and that for each i = 1, . . . , n− 1 we have

hi

hi + hi+1
ci−1 + 2ci +

hi+1

hi + hi+1
ci+1= 3f([xi−1, xi, xi+1]).

where hi = xi+1 − xi, and where c0 = v′′(A) and cn = v′′(B) (cn is not
really defined since sn(x) isn’t defined, but it is convenient to define it so
that the above formulas hold).

(2) Say that x0 < x1 < · · · < xn are reals, and v(x) is a cubic spline with
abscissae x0, . . . , xn (i.e., v(x) is a piecewse cubic polynomial in the intervals
(xi, xi+1) for i = 0, . . . , n− 1). How many parameters describe v(x)? If we
insist that v(x0), . . . , v(xn) take on n+1 given values, how many equations
to we get on the parameters describing v? If we insist that v is twice
continuously differentiable at x1, . . . , xn−1, show many equations do we
get?

(3) Say that A = x0 < x1 < · · · < xn = B, and v(x) is a cubic spline approx-
imating f(x), with abscissae x0, . . . , xn. Say that instead of the natural
spline (i.e., v′′(A) = v′′(B) = 0), we fix v′(A) = f ′(A) (which we pre-
sume is known), but we keep the condition v′′(B) = 0. As usual, say that
h1 = h2 = · · · = hn−1.
(a) What does v′(A) = f ′(A) tell you about the coefficients of the cubic

polynomial s0(x) = a0 + b0(x − x0) + c0(x − x0)
2 + d0(x − x0)

3 that
agrees with v(x) in [x0, x1]?

(b) Show that the above information allows you to determine 2c0 + c1.
(c) If we now write a system of equations for c = (c0, c1, . . . , cn−1), do we

still get a system of equations where (2I+M)c is determined for some
matrix with ∥M∥∞ ≤ 1?

For divided differences the following formulas are useful: f [x0, . . . , xn] =
f (n)(ξ)/n! for some ξ contained in any interval containing x0, . . . , xn (we
called this the “generalized mean-value” theorem). If p(x) interpolates
f(x) at x0, . . . , xn, then the “error in polynomial interpolation” theorem
states that f(x) − p(x) = f (n+1)(ξ)/(n + 1)! for some ξ contained in any
interval containing x0, . . . , xn and x. You should realize that this second
statement follows from the first. You should realize that fixing x0 and
taking x1, . . . , xn tending to x0 you essentially get Taylor’s theorem.

(4) Let x0, x1, x2, x3 be given by xi = i/3, and f(x) = sin(x). Give a bound
on |f [x0, x1, x2, x3]| using the generalized mean-value theorem.

(5) Let x0, x1, x2, x3 be given by xi = i/3, and f(x) = sin(x). Say that you find
the polynomial p(x) of degree at most 3 such that p(xi) = f(xi) i = 0, . . . , 3.
Estimate the error in p(1/2) and f(1/2) using the error in Newton divided
differences formula.
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(6) Let n ∈ N, and let x0, x1, x2, x3 be given by xi = 10−ni/3. Say that you
find the polynomial p(x) of degree at most 3 such that p(xi) = sin(i), and
that you compute p(10−n(3/2)).
(a) For n = 6, is it more numerically accurate to compute p(x) using mono-

mial interpolation or using Lagrange interpolation? Explain roughly
why this holds.

(b) Does the value (with exact computation) of p(10−n(3/2)) depend on
n? Explain.

(7) Say that n ∈ N, and that you have computed the monomial form of p(x) =
c0 + c1x+ · · ·+ cn−1x

n−1 such that p(i) = 1/i for i = 1, 2, . . . , n. Say that
q(x) is the unique polynomial of degree at most n such that q(i) = 1/i
for i = 1, 2, . . . , n + 1. Imagine that you want to compute q at ℓ values
y1, . . . , yℓ.
(a) Explain how to do this in a way that takes you O(ℓn + n2) flops

(floating-point operations).1

(b) If you used Lagrange interpolation (from scratch, ignoring the fact
that you already know p), explain why this would take O(ℓn + n2)
flops as well (with slightly different constants).

(8) Consider the implicit trapezoidal method (see [A&G], bottom page 493) to
solve y = f(y), subject to y(0) = y0: choose a step size, h > 0, and define
y1,y2, . . . via

(1) yi+1 = yi + h
f(yi) + f(yi+1)

2
;

taking yi as an approximation to y(ih).
(a) Consider the single variable ODE y′ = ay, where a ∈ R is constant.

Show that the above method gives the recurrence

yi+1 = yi
1 + ah/2

1− ah/2
.

(b) Show that if a < 0 and y0 = 1, we have 0 < |yi+1| < |yi| for all m.
[Hint: show that (1+ ah)/(1− ah) is both < 1 and > −1; since 1− ah
is positive, you can multiply both sides by 1− ah.]

(c) Show that if 0 ≤ ah < 2 and y0 = 1, we have yi+1 > yi for all i. [Hint:
use the idea for part (b); if 0 ≤ ah < 2, is it still the case that 1− ah
is positive?]

(d) What happens when ah > 2? Why is the behaviour of y1, y2, . . .
qualitatively different than the true solution y(t) = eat?

(9) Let y = y(t) be infinitely differentiable (for simplicity), and consider the
approximation

y(t+ h)− y(t)

h
≈ y′(t+ h) + y′(t)

2

for a fixed t and small h > 0.

1Note: there are ways to do this in O(ℓn+ n) = O(ℓn) flops; see the solutions.
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(a) By a Taylor expansion, show that both sides equal y′(t)+(h/2)y′′(t)+
O(h2). [Hint: You’ll want to apply Taylor’s theorem to y′, namely
y′(t+ h) = y′(t) + hy′′(t) +O(h2).]

(b) Show that if y′(t) = f(y(t)) for some function, f , then

y(t+ h) = y(t) + h
f(y(t+ h) + f(y(t))

2
+O(h3).

(c) Conclude that the scheme (1) is a second order scheme, i.e., each
iteration holds to within O(h3).

(10) NO MORE EXERCISES FOR THIS YEAR.
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