Solutions to Final Practice 2, CPSC 303, 2024
(1) If $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$, we have

$$
\begin{aligned}
& p(1)=c_{0}+c_{1}+c_{2}+c_{3} \\
& p^{\prime}(1)=c_{1}+2 c_{2}+3 c_{3} \\
& p(2)=c_{0}+2 c_{1}+4 c_{2}+8 c_{3} \\
& p^{\prime}(2)=c_{1}+4 c_{2}+12 c_{3}
\end{aligned}
$$

Hence given $p(1), p^{\prime}(1), p(2), p^{\prime}(2)$, we get a system of 4 equations with 4 unknowns. This system has a unique solution inf the homogeneous system does. Sc it suffices to show that there is a unique polynomial $p(x)$ as above with

$$
p(1)=p^{\prime}(1)=p(2)=p^{\prime}(2)=0
$$

namely $p(x)=0$: Since $p(1)=p(2)=0$,
we have $p^{\prime}(\xi)=0$ for same $1<\xi<2$.
Hence p^{\prime} has $\geqslant 3$ roots $(1, \xi, 2)$; by applying Rule's theorem to p^{\prime}, we have that p " has at l cast 2 roots (one between I and ξ, another between § and 2): similarly $p^{\prime \prime \prime}$ has at least one root. Since

$$
p^{\prime \prime \prime}(x)=6 c_{3} \text { has } \geqslant 1 \text { root, }
$$

we have $c_{3}=0$;
then $p(x)=c_{0}+x c_{1}+x^{2} c_{2}$; since

$$
p^{\prime \prime}(x)=2 c_{2} \text { has } \geqslant 2 \text { rods, }
$$

$C_{2}=0$. Then $p(x)=c_{c}+x c_{1}$. Since
$p^{\prime}(x)=c_{1}$ and hes $\supseteq 3$ roots, $c_{1}=0$.

Then $p(x)=C_{0}$; since $p(1)=p(2)=0$,

$$
c_{c}=0 .
$$

Hence the only polynomial p as above is $p(x)=0$.
(2) We have

$$
\begin{aligned}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+O\left(h^{3}\right) \\
& f(x+2 h)=f(x)+2 h f^{\prime}(x)+\frac{(2 h)^{2}}{2} f^{\prime \prime}(x)+O\left(h^{3}\right) \\
& f(x+3 h)=f(x)+3 h f^{\prime}(x)+\frac{(3 h)^{2}}{2} f^{\prime \prime}(x)+O\left(h^{3}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
& =\left(c_{0}+c_{1}+c_{2}\right) f(x)+\left(c_{0}+2 c_{1}+3 c_{2}\right) h f^{\prime}(x) \\
& +\left(c_{0}+4 c_{1}+9 c_{2}\right) \frac{h^{2}}{2} f^{\prime \prime}(x)+o\left(h^{3}\right)
\end{aligned}
$$

So

$$
\left.\frac{c_{0} f(x+h)+c_{1} f(x+2 h)+c_{2} f(x+3 h)}{h^{2}}=f^{\prime \prime}(x)+c h\right)
$$

if

$$
\begin{aligned}
& c_{0}+c_{1}+c_{2}=0 \\
& c_{0}+2 c_{1}+3 c_{2}=0 \\
& c_{0}+4 c_{1}+9 c_{2}=2
\end{aligned}
$$

Since $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]$
is the transpose of a Vandermonde matrix, the above 3×3 system has a mique solution.
(3) We have

$$
\begin{aligned}
N_{r o d, n-1} U & =N_{r o d n-1}\left[\begin{array}{c}
\sin (\pi / n) \\
\vdots \\
\sin (\pi(n-1) / n)
\end{array}\right] \\
& =\left[\begin{array}{c}
\sin (2 \pi / n) \\
\sin (\pi / n)+\sin (3 \pi / n) \\
\sin (2 \pi / n)+\sin (4 \pi / n) \\
\vdots \\
\sin (2 \pi(n-3) / n+\sin (2 \pi(n-1) / n) \\
\sin (2 \pi(n-2) / n)
\end{array}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sin (\alpha+\beta)+\sin (\alpha-\beta) \\
& =2 \sin (\alpha) \cos (\beta)
\end{aligned}\left(\begin{array}{c}
\text { see dhs } \\
\text { on } 04
\end{array} 08\right)
$$

and $\sin (0)=\sin (\pi)=0$, we have

$$
\begin{aligned}
& N_{r o d, n-1} U \\
& =\left[\begin{array}{c}
\sin (0) \quad \sin (2 \pi / n) \\
\sin (\pi / n)+\sin (3 \pi / n) \\
\sin (2 \pi / n)+\sin (4 \pi / n) \\
\vdots \\
\sin (\pi(n-3) / n+\sin (\pi / n-1) / n) \\
\sin (\pi(n-2) / n)+\sin (\pi)
\end{array}\right] \\
& =\left[\begin{array}{c}
\sin (\pi / n) \\
\sin (2 \pi / n) \\
i \\
\sin ((n-1) \pi / n)
\end{array}\right] \begin{array}{c}
2 \cos (\pi / n) \\
= \\
(2 \cos (\pi / n)
\end{array}
\end{aligned}
$$

Hence $2 \cos (\pi / n)$ is the corresponding eigenuclue.
Note: This is a geod way to conceptualize why in class on 04_08 we have that the heat equation approximation is

$$
u(x, s H) \approx(1-2 \rho+2 \rho \cos (\pi h))^{2} u(x, 0)
$$

when

$$
u(x, 0)=\sin (\pi x)
$$

(4) We have $m \ddot{x}(t)=-u(\| x+1) x /\|x\|$
where $-u(\|x\|) x /\|x\|=-4 x$,
So $u(\|x\|)=4\|x\|$ so $u(r)=4 r$

So $U^{\prime}=u$ for $U=2 r^{2}$. Hence the energy is

$$
\frac{1}{2} m(\dot{x})^{2}+m\left(2 x^{2}\right)
$$

(eng. Homework 5, Problem 2).

An alternate approach is to multiply

$$
m \ddot{x}+4 m x=0
$$

$b_{1} \dot{x}$ and integrate:

$$
m \ddot{x} \dot{x}+4 m x \dot{x}=0
$$

So

$$
\frac{1}{2} m(\dot{x})^{2}+m\left(2 x^{2}\right)=\text { constant }
$$

and the left-hand-side is the energy.]

Note: if $U(r)=2 r^{2}+C$ where
C is any constant, then still $U^{\prime}(r)=u(r)$.
Hence one can equally well say that the energy is

$$
\frac{1}{2} m(\bar{x})^{2}+m\left(2 x^{2}\right)+C
$$

for any constant, C.
(It is simplest to take $C=0$, which
we do above, and which we do for
part (b))
(Lb) With

$$
\text { Energy }=\frac{1}{2} m(x)^{2}+m\left(2 x^{2}\right)
$$

since $x(1)=1$ and $\dot{x}(1)=4$, we have

$$
\text { Energy }=m\left(\left(\frac{1}{2}\right) 16+2\left(1^{2}\right)\right)=10 m
$$

(4c) Hence for all t we have

$$
10 m=E_{n e r g y} \geq m\left(2 x^{2}\right)
$$

So $2(x(t))^{2} \leq 10$ so $x(t) \leq \sqrt{5}$

5 (a) Similar to solution of Homework 4,
Problem (La).
(b) Since

$$
\begin{gathered}
y(h)=e^{a h} y_{0}=\left(1+a h+\frac{(a h)^{2}}{2}+\partial\left(h^{3}\right)\right) y_{0} \\
=\left(1+a h+\frac{(a h)^{2}}{2}\right) y_{0}+O\left(h^{3}\right)
\end{gathered}
$$

any second order method must
have

$$
y_{1}=\text { an approximation to } y(h)
$$

valid up to $O\left(h^{3}\right)$
$\left(O\left(h^{3}\right)\right.$ far a second order method),
So
Y, must equal $y(h)+O\left(h^{3}\right)$

$$
\begin{aligned}
& =\left(\left(1+a h+\frac{(a h)^{2}}{2}\right) y_{0}+O\left(h^{3}\right)\right)+O\left(h^{3}\right) \\
& =\left(1+a h+\frac{(a h)^{2}}{2}\right) y_{0}+O\left(h^{3}\right) \\
& (6)^{(a)} \text { Hence } \\
& \quad y_{1}^{\prime}=-300 y_{1}, \quad y_{1}(0)=2
\end{aligned}
$$

$$
y_{2}^{\prime}=y_{2}, \quad y_{2}(0)=3
$$

so $\quad y_{1}(t)=e^{-300 t} 2$

$$
y_{2}(t)=e^{t} 3
$$

$\left(\operatorname{cor} \quad \vec{y}(t)=\left(e^{-3 \cot } 2, e^{t} 3\right)\right)$.
(Gb)

$$
\begin{aligned}
\vec{y}_{i+i} & =(\bar{I}+h A) \vec{y}_{i} \\
& =\left(I+\frac{1}{1 c_{c}}\left[\begin{array}{cc}
-3 c e & 0 \\
c & 1
\end{array}\right]\right) \vec{Y}_{i} \\
& =\left[\begin{array}{cc}
1-3 & e \\
0 & 1+\frac{1}{1 c c}
\end{array}\right] \vec{Y}_{i} \\
& =\left[\begin{array}{cc}
-2 & 0 \\
c & 1+\frac{1}{1 c_{0}}
\end{array}\right] \vec{Y}_{i}
\end{aligned}
$$

Sc

$$
\vec{y}_{i}=\left[\begin{array}{cc}
-2 & 0 \\
0 & 1+\frac{1}{100}
\end{array}\right]^{i} \vec{y}_{0}=\left[\begin{array}{c}
(-2)^{i} \\
2 \\
\left(1+\frac{1}{100}\right)^{i}
\end{array}\right]
$$

(c) The first component is $(-2)^{i} 2$, which does not decrease.
(d) For $\vec{Y}_{i+1}=\vec{Y}_{i}+h f\left(\vec{Y}_{i+1}\right)$
we have

$$
\begin{aligned}
\vec{y}_{i+1} & =\vec{y}_{i}+h\left[\begin{array}{cc}
-300 & 0 \\
0 & 1
\end{array}\right] \vec{y}_{i+1} \\
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \vec{y}_{i+1} } & =\vec{y}_{i}+\left[\begin{array}{cc}
-3 & 0 \\
0 & 1 / 100
\end{array}\right] \vec{y}_{i+1}
\end{aligned}
$$

So

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 1-1 / 1 c o
\end{array}\right] \stackrel{\rightharpoonup}{Y}_{i+1}=\vec{Y}_{i}
$$

So

$$
\vec{y}_{i+1}=\left[\begin{array}{cc}
1 / 4 & 0 \\
0 & 100 / 99
\end{array}\right] \stackrel{\rightharpoonup}{y_{i}}
$$

So

$$
\begin{aligned}
\hat{y}_{i} & =\left[\begin{array}{cc}
1 / 4 & 0 \\
c & 100 / 99
\end{array}\right]^{i} \vec{y} / 0 \\
& =\left[\begin{array}{l}
(1 / 4)^{i} 2 \\
(100 / 99)^{i} 3
\end{array}\right]^{i} .
\end{aligned}
$$

So for Backward Euler's method, the first component is $(1 / 4)^{-} 2$, which does decrease ir i.
(Note: The above is an example of a "stiff ODE", where backwerd

Euler does better than forward Euler.]

