Final Practice, Solutions
(1) (c) False: Since mix isr't generally 0 , $m \dot{x}$ depends on time.
(b) True; see HW 5, Problem 2
(c)True; true of - moose generally - $y^{\prime \prime}=f(y)$ (HW 2, Problem $4(g)$)
(d) True; Nw 6, Problem 3(c)
(e) false - you con scale any \vec{x} sit.
$\|A \times\|_{\infty}=\|A\|\|\vec{x}\|_{\infty}$ and get another example (e.g. if $\vec{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ works, then so $\operatorname{does}\left[\begin{array}{l}a \\ a\end{array}\right]$
for any $a \in \mathbb{R}$)
(f) False - generally you have to solve an $(n+1) \times(n+1)$ system, whorl takes roughly $O\left(n^{3}\right)$ flops.
[Theoretically one can d_{0} this in some $O\left(n^{2.36}\right)$ flops, but not in practice...]
(g) True; each $L_{j}(x)$ tales $O(n)$ flops,
so $\sum_{j=0}^{n} Y_{j} L_{j}(x)$ takes $O\left(n^{2}\right)$ flops
(h) True: see [AlG], bottom page 308.

Idea: compute
(1) $\begin{gathered}f\left[x_{i}\right] \\ i=0, \ldots, n\end{gathered}\left|\begin{array}{c}f\left[x_{i-1}, x_{i}\right] \\ i=1, \ldots, n \\ a s \\ \frac{f\left[x_{i}\right]-f\left[x_{i-1}\right]}{x_{i}-x_{i-1}}\end{array}\right|$

$$
\begin{aligned}
& \text { (3) } f\left[x_{i-2}, x_{i-1}, x_{i}\right] \\
& i=2, \cdots, n \\
& \text { as } \\
& \frac{f\left(x_{i-1}, x_{i}\right]-f\left(x_{i-2}, x_{i-1}\right)}{x_{i}-x_{i-2}}
\end{aligned}
$$

(4) etc. ..., until last stage nt)

We have $n+1$ stages, where $I+h$ stage takes $O(n+2-j)$ flops.
(i) False: $f\left[x_{0}, \ldots, x_{n}\right]$ is independent of the order.
(2) We have n polynamids of degree 3, for $4 n$ parameters. Each polynomial

$$
S_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3}
$$

has 2 giver values (at $x=x_{i}$ and $x=x_{i+1}$),
for $2 n$ equations. Insisting on continuous first and second derivative at x_{1}, \ldots, x_{n-1} gives $2(n-2)$ equations. Total number of equations $=2 n+2(n-1)=4 n-2$.

3(a) Since $s_{0}^{\prime}(x)=b_{0}+c_{0} 2\left(x-x_{0}\right)+d_{0} 3\left(x-x_{0}\right)^{2}$, we have $s_{0}^{\prime}\left(x_{0}\right)=b_{0}$. Hence $b_{0}=s_{0}^{\prime}\left(x_{0}\right)$ $=v^{\prime}\left(x_{0}\right)=f^{\prime}(A)$; hence $b_{0}=f^{\prime}(A)$.
(b) $b_{i}=f\left(x_{i}, x_{i+1}\right]-\frac{h_{i}}{3}\left(2 c_{i}+c_{i+1}\right)$ implies

$$
f^{\prime}(A)=b_{0}=f\left[x_{0}, x_{i}\right]-\frac{h}{3}\left(2 c_{i}+c_{i}\right)
$$

Hence

$$
2 c_{0}+c_{1}=\frac{f\left[x_{0}, x_{1}\right]-f^{\prime}(A)}{h / 3}
$$

(c) The $i=1$ instance of the equation
for \vec{c} in terms of $3 f\left[x_{i-1}, x_{i}, x_{i+1}\right]$
plus the new equation gives

$$
\begin{aligned}
2 c_{0}+c_{1} & =\frac{f\left[x_{0} x_{1}\right]-f^{\prime}(A)}{h / 3} \\
\frac{1}{2} c_{0}+2 c_{1}+\frac{1}{2} c_{2} & =3 f\left[x_{0}, x_{1}, x_{2}\right]
\end{aligned}
$$

and the unchanged other equations:

$$
\begin{aligned}
\frac{1}{2} c_{1}+2 c_{2}+\frac{1}{2} c_{3} & =3 f\left(x_{1}, x_{2}, x_{3}\right] \\
\frac{1}{2} c_{2}+2 c_{3}+\frac{1}{2} c_{4} & =3 f\left(x_{2}, x_{3}, x_{4}\right)
\end{aligned}
$$

So instead of $N_{r o d, n-1}$ we get $(2 I+m) \stackrel{\rightharpoonup}{c}$ is given, where m is $n+h$ for $\vec{c}=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)$, where M is

$$
m=\left[\begin{array}{cccccc}
0 & 1 & & & & \\
1 / 2 & 0 & 1 / 2 & & & \\
& 1 / 2 & 0 & 1 / 2 & & \\
& & & \ddots & \ddots & \\
& & & & \frac{1}{2} & 0 \\
& & & 1 / 2 \\
& & & & \frac{1}{2} & 0
\end{array}\right]
$$

Hence $\|m\|_{\infty}=1$, since the new row has row sum 1 , and the modified $2^{\text {nd }}$ row has row sum 1 .
(4) The generalized mean-value theorem states that

$$
f\left[x_{0}, \ldots, x_{3}\right]=\frac{f^{(3)}(\xi)}{3!}
$$

for some ξ in any interval containing $x_{0,1,} x_{3}$. Since $x_{i}=i / 3$, this interval can be as small as $[0,1]$, ice. $\xi \in[0,1]$. Since $f(x)=\sin (x), \quad f^{\prime \prime \prime}(x)=-\cos (x)$.

Hence

$$
\left|f\left[x_{0}, ., x_{3}\right]\right|=\frac{|-\cos (\xi)|}{3!} \leqslant \frac{1}{3!}=\frac{1}{6}
$$

(since we only know $\xi \in(0,1), \cos (\xi)$ can be as large as 1).
(5) There error ir interpolation theorem says that

$$
\begin{aligned}
& \text { sails that } \\
& |f(x)-p(x)| \leq\left|\frac{f^{(4)}(\xi)}{4!}\right|\left|\prod_{i=p}^{3}\left(x-x_{i}\right)\right|
\end{aligned}
$$

So $\left|f^{(4)}(\xi)\right|=|\sin (\xi)|$ which is bounded by 1 (os, move carefully), since x and $x_{0},-, x_{3}$ lie on $[0,1)|\sin (\xi)| \leqslant \sin (1)$ (which is <1 since $1 \leq \pi / 2$)

Also:

$$
\begin{aligned}
\prod_{i=0}^{3}\left(x-x_{i}\right) & =\left(\frac{1}{2}-0\right)\left(\frac{1}{2}-\frac{1}{3}\right)\left(\frac{1}{2}-\frac{2}{3}\right)\left(\frac{1}{2}-1\right) \\
& =\frac{1}{2} \cdot \frac{1}{6} \cdot \frac{-1}{6} \cdot \frac{-1}{2}=\frac{1}{144}
\end{aligned}
$$

So

$$
\begin{array}{r}
\left|\frac{f^{(4)}(\xi)}{4!}\right|\left|\prod_{i=p}^{3}\left(x-x_{i}\right)\right| \leqslant \frac{\sin (1)}{24} \cdot \frac{1}{144} \\
\text { or just } \frac{1}{24} \cdot \frac{1}{144}
\end{array}
$$

16) (a) To compute the coefficients
c_{0}, \ldots, c_{3} with $p(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$
will give a Vandermonde matrix with condition number at least order $\left(10^{n}\right)^{3}$ (See HW6, Prob 5). For $n=6$, this number is larger than $2^{53} \approx 10^{16}$, so we can't expect any precision from this calculation.

By contrast, the $L_{j}(x)$ involve products of $\frac{x-x_{i}}{x_{j}-x_{i}}$. Since $x_{,} x_{i}, x_{j}$ are numbers 10^{-n} times $0,1 / 3,2 / 3,1,12$, these numbers are normal. Hence we expect $x_{,} x_{i}, x_{j}$ to have absolute error in precision roughly $10^{-n} \cdot 10^{-16}$. Since $x-x_{i}, x_{j}-x_{i}$ are all close to 10^{-n}, we expect relative error roughly 10^{-16}.

Hence we expect $L_{j}(x)$ to be within $6 \cdot 10^{-16}$ of relative precision (since each $L_{j}(x)$ is the product of 6 terms). So we expect Lagrange interpolation to be much more precise.
[The only exception wald be if $p\left(10^{-n}(3 / 2)\right)$ had some unexpected cancellation... To be 100% sure you'd have to compare $p\left(10^{-n}(3 / 2)\right)$ to $\sin (i)$ for $i=0,1,2,3 \ldots]$ (See HW0, Prob 5)

G(b) No: Use $p_{n}(x)$ to denote $p(x)$ for various values of $n \in \mathbb{N}$. Then for any $n, m \in \mathbb{N}$ we have

$$
r(y)=p_{n}\left(10^{-n} y\right)-p_{m}\left(10^{-m} y\right)
$$

has roots at $y=0,1 / 3,2 / 3,3 / 3$; since
$r(y)$ is of degree $\leqslant 3$, and $r(y)$ has at least 4 roots, $r(y)=0$ (i.e. $r(y)$ is the zero polynomial).

Hence $p_{n}\left(10^{-n} y\right)=p_{m}\left(10^{-m} y\right)$ for all y, and hence $p_{n}\left(10^{-n}(3 / 2)\right)=p_{m}\left(10^{-m}(3 / 2)\right.$.

Compare with HW 7, Problem 3, and Midterm, Question 4.
[Nate: The midterm solutions show that there are a number of ways of solving this problem, such as with Lagrange interpolation.]
(7) ${ }^{(a)}$ The divided difference formula gives

$$
q(x)=p(x)+\left(x-x_{1}\right)-\left(x-x_{n}\right) f\left[x_{1}, \ldots x_{n+1}\right]
$$

where $f(x)=\sin (1 / \alpha)$. The flop count is?
flops to compute $f\left[x_{1}, \ldots, x_{n-1}\right]: O\left(n^{2}\right)$
"." " $q\left(y_{i}\right)$ for each i :
$O(n)$ to compute $p\left(y_{i}\right)$,
$O(n) " \quad " \quad\left(y_{i}-x_{1}\right)-\ldots\left(y_{1}-x_{n}\right)$
$O(1)$ to multiply $\left(y_{i}-x_{1}\right) \ldots\left(y_{1}-x_{n}\right)$ times

$$
f\left(x_{1}, \ldots, x_{n+1}\right]
$$

So total of $O(n)$ flops per each $q\left(y_{i}\right)$
$" . " O(\ln)$ for all $q\left(y_{i}\right), i=1, \ldots, l$.
Hence total flops $=O\left(n^{2}\right)+O(\ln)$

7(b) Each $L_{j}\left(y_{i}\right)$ requires you to: $f\left(x_{j}\right) \prod_{k \neq j} \frac{1}{x_{j}-x_{k}} \quad$ (these can be reused over all j)

$$
\prod_{k \neq j}\left(y_{i}-x_{k}\right)=\frac{\left.\prod_{k=1}^{n+1} \mid y_{i}-x_{k}\right)}{y_{i}-x_{j}} \leftarrow \begin{gathered}
\text { these can } \\
\text { be revised } \\
\text { over all }
\end{gathered}
$$

For a total of
$O\left(n^{2}\right)$ flops for $f\left(x_{j}\right)_{k \neq j} \frac{1}{x_{j}-x_{k}}$ per
each
$y_{i}$$\left\{\begin{array}{lll}O(n) & f l \text { lops for } & L_{1}\left(y_{i}\right), \ldots, L_{n+1}\left(y_{i}\right) \\ O(n) & f l o p s & \text { for }\end{array} \sum_{j}\left(f\left(x_{j}\right) \prod_{k \neq j} \frac{1}{x_{j} x_{k}}\right) L_{j}\left(y_{i}\right)\right.$

Total $O\left(n^{2}+\ln \right)$
Remark: See $[A \& G]$, page 305 , for a mare complete discussion.

Note: (Ia) can both be done with $O(l n+n)$ operations: it suffices to compute the C_{n} such that

$$
q(x)=p(x)+c_{n}\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

You can find c_{n} as

$$
c_{n}=\frac{q\left(x_{n+1}\right)-p\left(x_{n+1}\right)}{\left(x_{n+1}-x_{1}\right)\left(x_{n+1}-x_{2}\right) \ldots\left(x_{n+1}-x_{n}\right)}
$$

since you want $q\left(x_{n+1}\right)=\frac{1}{n+1}$, and Since you can compute $p\left(x_{n+1}\right)$. Since you can compute $p\left(x_{n+1}\right)$ in $O(n)$ flops, and $\left(x_{n+1}-x_{1}\right) \ldots\left(x_{n+1}-x_{n}\right)$ as well, yon can find C_{n} in $O(n)$ flops instead of $O\left(n^{2}\right)$ flops. Similarly, from Lagrange interpolation, you have $q(x)=p(x)+\frac{\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{n+1}-x_{1}\right) \ldots\left(x_{n+1}-x_{n}\right)}\left(\frac{1}{n_{+1}}\right)$, which
also takes $O(n)$ flops.
$(8)(a)$ ving $f(y)=a y$

$$
y_{i+1}=y_{i}+h \frac{f\left(y_{i}\right)+f\left(y_{i+1}\right)}{2}
$$

becomes

$$
y_{i+1}=y_{i}+h \frac{a y_{i}+a y_{i+1}}{2}
$$

i.e.

$$
y_{i+1}\left(1-\frac{a h}{2}\right)=y_{i}\left(1+\frac{a h}{2}\right)
$$

Sc

$$
y_{i+1}=y_{i} \frac{1+a h / 2}{1-a h / 2}
$$

(b) If $a<0$, then $1-a h / 2>1$

$$
\begin{aligned}
& \frac{1+a h / 2}{1-a h / 2}<1 \text { iff } \\
& 1+a h / 2<1-a h / 2 \text { iff } a h<-a h
\end{aligned}
$$

which is true, since $a<0$.

$$
\begin{aligned}
& \frac{1+a h / 2}{1-a h / 2}>-1 \text { if } \\
& 1+a h / 2>-1+a h / 2 \quad \text { if } 1>-1
\end{aligned}
$$

which is true. Hence

$$
\frac{1+a h / 2}{1-a h / 2}
$$

(C) It suffices to shew that

$$
\frac{1+a h / 2}{1-a h / 2}>1
$$

Since $a h<2, \quad a h / z<1$ so $1-a h / 2>0$. Hence wee can multiply, both sides by $1-a h / 2$ and the inequality above is equivalent
to

$$
1+a h / 2>1-a h / 2
$$

So

$$
a h / z>-a h / z
$$

which holds since $a, h>0$.
(d) It $a h>2$ then $a h / 2>1$

So

$$
\begin{aligned}
& 1-a h / 2<0 \text {. Hence } \\
& \frac{1+a h / 2}{1-a h / 2}<0
\end{aligned}
$$

and so the y_{i} alternate in signs (since $y_{0}=1$, so $y_{0} \not \ddagger c$).
The true values of $y(0), y(h), y(2 h), \ldots$ with $y_{0}=1$ are

$$
y(i h)=e^{a(i h)} 1=e^{i a h}
$$

which are always positive.

$$
\begin{aligned}
& q(a) \\
& \frac{y(t+h)-y(t)}{h} \\
& \left(y(t)+h y^{\prime}(t)+\frac{h^{2}}{2} y^{\prime \prime}(t)+O\left(h^{3}\right)\right)-y(t) \\
& =\frac{\left(y^{\prime}(t)+\left(h^{2} / 2\right) y^{\prime \prime}(t)+O\left(h^{3}\right)\right.}{h} \\
& =\frac{h}{h} \\
& =y^{\prime}(t)+\frac{h}{2} y^{\prime \prime}(t)+O\left(h^{3}\right)
\end{aligned}
$$

Also

$$
\frac{y^{\prime}(t+h)+y^{\prime}(t)}{2}=\frac{y^{\prime}(t)+h y^{\prime \prime}(t)+O\left(h^{2}\right)+y^{\prime}(t)}{2}
$$

$$
=y^{\prime}(t)+\frac{h}{2} y^{\prime \prime}(t)+O\left(h^{2}\right)
$$

Hence both sides $=y^{\prime}(t)+\frac{h}{2} y^{\prime \prime}(t)+O\left(h^{2}\right)$.
(b) By (a),

$$
\begin{aligned}
\frac{y(t+h)-y(t)}{h} & =\frac{y^{\prime}(t+h)+y^{\prime}(t)}{2}+O\left(h^{2}\right) \\
& =\frac{f(y(t+h))+f(y(t))}{2}+O\left(h^{2}\right)
\end{aligned}
$$

So

$$
y(t+h)-y(t)=\frac{h}{2}(f(y(t+h))+f(y(t)))+C\left(h^{3}\right)
$$

and adding $y(t)$ to both sides yields

$$
y(t+h)=y(t)+\frac{h}{2}(f(y(t+h))+f(y(t)))+C\left(h^{3}\right)
$$

(c) Because of the $O\left(h^{3}\right)$ term above, the method (1) is accurate
to second order.

