
Lecture Notes 2: Polynomial Interpolation
CPSC 303: Numerical Approximation and Discretization

Ian M. Mitchell
mitchell@cs.ubc.ca

http://www.cs.ubc.ca/~mitchell

University of British Columbia
Department of Computer Science

Winter Term Two 2012–2013

Copyright 2012–2013 by Ian M. Mitchell
This work is made available under the terms of the Creative Commons Attribution 2.5 Canada license

http://creativecommons.org/licenses/by/2.5/ca/

http://creativecommons.org/licenses/by/2.5/ca/

Outline

• Background

• Problem statement and motivation
• Formulation: The linear system and its conditioning

• Polynomial bases

• Monomial
• Lagrange
• Newton
• Uniqueness of polynomial interpolant

• Divided differences

• Divided difference tables and the Newton basis interpolant
• Divided difference connection to derivatives

• Osculating interpolation: interpolating derivatives

• Error analysis for polynomial interpolation

• Reducing the error using the Chebyshev points as abscissae

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 2/ 53

Interpolation Motivation

We are given a collection of data samples {(xi, yi)}ni=0

• The {xi}ni=0 are called the abscissae (singular: abscissa),
the {yi}ni=0 are called the data values

• Want to find a function p(x) which can be used to estimate y(x) for
x 6= xi

• Why? We often get discrete data from sensors or computation, but
we want information as if the function were not discretely sampled

• If possible, p(x) should be inexpensive to evaluate for a given x

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 3/ 53

Interpolation Formulation

There are lots of ways to define a function p(x) to approximate
{(xi, yi)}ni=0

• Interpolation means p(xi) = yi (and we will only evaluate p(x) for
mini xi ≤ x ≤ maxi xi)

• Most interpolants (and even general data fitting) is done with a
linear combination of (usually nonlinear) basis functions {φj(x)}

p(x) = pn(x) =
n∑
j=0

cjφj(x)

where cj are the interpolation coefficients or interpolation
weights

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 4/ 53

How Many Ways to Interpolate?

Given data samples {(yi, ti)}6i=0 (eg: n+ 1 = 7 samples), how many
different mathematical functions can interpolate this data?

(A) One: A polynomial of suitable degree.

(B) Two: Either a polynomial of suitable degree, or the Fourier
transform.

(C) Seven, because there are seven samples.

(D) An infinite number.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 5/ 53

Linear System for Interpolation

Our interpolant is p(x) =
∑n
j=0 cjφj(x)

• From interpolation condition

p(xi) =
n∑
j=0

cjφj(xi) = yi i = 0, 1, . . . , n

which leads to the linear system Ac = y where

A =


φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

. . .
...

φ0(xn) φ1(xn) · · · φn(xn)

c =


c0
c1
...
cn

 y =


y0
y1
...
yn


• When can we accurately solve this linear system?

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 6/ 53

How many basis functions?

How many basis functions do we need to interpolate this data set?

(A) Six.

(B) Seven.

(C) Eight.

(D) An infinite number.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 7/ 53

Determining the Interpolation Coefficients

Under what conditions can we find a unique set of interpolation
coefficients {cj}nj=0?

(A) If the basis functions {φj}nj=0 are linearly independent.

(B) If A is nonsingular (eg: det(A) 6= 0).

(C) If for any x 6= 0, Ax 6= 0.

(D) None of the above.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 8/ 53

Linear System Conditioning Digression

Consider solving linear system Ax = b given A and b

• Due to approximation error, we actually use a slight perturbation
Â = A+ ∆A

• The solution to the perturbed system is x̂ = x+ ∆x
• So b = Âx̂ = Ax̂+ ∆Ax̂ implies b−Ax̂ = ∆Ax̂
• Then ∆x = x̂− x = A−1Ax̂−A−1b = A−1(Ax̂− b) = −A−1∆Ax̂
• Now take norms

‖∆x‖ ≤ ‖A−1‖‖∆A‖‖x̂‖
‖∆x‖
‖x̂‖︸ ︷︷ ︸

output error

≤ ‖A−1‖‖A‖‖∆A‖‖A‖ = cond(A)
‖∆A‖
‖A‖︸ ︷︷ ︸

input error

where cond(A) = ‖A−1‖‖A‖ is the definition of the condition
number of matrix A

• Perturbations on b have a similar effect, so the overall result is
roughly (assuming ‖x̂‖ ≈ ‖x‖)

‖∆x‖
‖x‖

. cond(A)

(
‖∆b‖
‖b‖

+
‖∆A‖
‖A‖

)
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 9/ 53

Choosing Basis Functions

What should we use for the {φj}?
• Many possibilities: polynomials, trigonometric, exponential, rational

(fractions), wavelets / curvelets / ridgelets, radial basis functions,
. . .

• We will focus for now on polynomial basis functions

• Most commonly used
• Easy to evaluate, integrate, differentiate
• Illustrates the basic interpolation ideas and techniques

• Virtually all other interpolation problems will follow the same
procedure: form A and solve for c

• Now we are ready to examine particular polynomial bases which are
often chosen due to their simplicity, efficiency, numerical robustness,
extensibility, etc.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 10/ 53

Monomial Basis

The monomial basis functions are typically defined as φj(x) = xj

• We could also scale and shift: φ̃j(x) = sj(x− x̃)j for fixed known
scaling constants {sj}nj=0 and shift constant x̃

• Entries of A are aij = φj(xi) = (xi)
j

• Matrix is dense: O(n2) to construct and O(n3) to solve

• In fact, this particular matrix appears so often, it has a name:
“Vandermonde” matrix (in Matlab: vander)

• Interpolant p(x) can be evaluated in O(n) with Horner’s rule

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 11/ 53

Monomial Basis Conditioning

The monomial basis (and the corresponding Vandermonde matrix) are
known to be very poorly conditioned as n gets large and/or {xi} cover a
large range.

• Notice that φj(x) starts to look very similar to φj−1(x) and φj+1(x)
as j gets larger.

• Conditioning can be improved somewhat by scaling and/or shifting
basis functions

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 12/ 53

Monomial Example

Construct an interpolant for data points

{(xi, yi)} = {(2, 14), (6, 24), (4, 25), (7, 15)}

using the monomial basis.

• Requires four basis functions: {φj(x)} = {1, x, x2, x3}
• The interpolant will be p(x) = c0 + c1x+ c2x

2 + c3x
3

• Construct linear system

A =


1 2 4 8
1 6 36 216
1 4 16 64
1 7 49 343

c =


c0
c1
c2
c3

 y =


14
24
25
15


and solve Ac = y to find c ≈

[
−0.267 1.700 2.767 3.800

]T
• Check cond(A) ≈ 6.1(103)

• However, if we scaled all the abscissae x̃i = 1000xi, the resulting
cond(Ã) ≈ 4.6(1012)

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 13/ 53

Monomial Interpolation Practice

For the data set

{(xi, yi)} = {(1, 11), (3, 13), (2, 12)}

and the monomial basis functions φj(x) = xj , what is the form of the
matrix A in Ac = y?

(A)

1 1 1
1 3 2
1 9 4

 (C)

1 1 1
1 3 9
1 2 4



(B)

 1 1 1
1 3 2
11 13 12

 (D)


1 1 1
1 3 2
1 9 4
11 13 12



A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 14/ 53

Lagrange Basis

The best conditioned matrix is the identity.

• In order for A = I, we need

aij = φj(xi) =

{
1 i = j

0 i 6= j

• We can achieve this by choosing the Lagrange basis functions

Lj(x) =
n∏

i=0,i6=j

(x− xi)
(xj − xi)

• Numerator ensures that aij = Lj(xi) = 0 for i 6= j
• Denominator normalizes to get ajj = Lj(xj) = 1

• With A = I, no need to solve linear system: cj = yj and
p(x) =

∑n
j=0 yjLj(x)

• Pros & Cons:

• Trivial to determine and modify interpolation coefficients
• Nontrivial to compute normalization constants or add new data

points

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 15/ 53

Lagrange Basis Conditioning

The Lagrange basis functions Lj(x) are clearly distinct. With abscissae
xi = i/5 for i = 0, 1, . . . , 5 the Lagrange basis function Lj(x) are shown
below.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 16/ 53

Lagrange Example

Construct an interpolant for data points

{(xi, yi)} = {(2, 14), (6, 24), (4, 25), (7, 15)}

using the Lagrange basis.

• Four basis functions

L0(x) =
(x− 6)(x− 4)(x− 7)

(2− 6)(2− 4)(2− 7)
L1(x) =

(x− 2)(x− 4)(x− 7)

(6− 2)(6− 4)(6− 7)

L2(x) =
(x− 2)(x− 6)(x− 7)

(4− 2)(4− 6)(4− 7)
L3(x) =

(x− 2)(x− 6)(x− 4)

(7− 2)(7− 6)(7− 4)

• Interpolant will be

p(x) =14
(x− 6)(x− 4)(x− 7)

(−4)(−2)(−5)
+ 24

(x− 2)(x− 4)(x− 7)

(+4)(+2)(−1)

+ 25
(x− 2)(x− 6)(x− 7)

(+2)(−2)(−3)
+ 15

(x− 2)(x− 6)(x− 4)

(+5)(+1)(+3)

• Scaling abscissae x̃i = 1000xi will produce different bases L̃j(x),
but the accuracy of the coefficients will remain the same

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 17/ 53

Lagrange Interpolation Practice

For the data set

{(xi, yi)} = {(1, 11), (3, 13), (2, 12)},

what is the Lagrange interpolant?

(A) 11
(x− 2)(x− 3)

(−1)(−2)
+ 12

(x− 1)(x− 3)

(+1)(−1)
+ 13

(x− 1)(x− 2)

(+2)(+1)

(B) 11
(x− 2)(x− 3)

(−1)(+2)
+ 12

(x− 1)(x− 3)

(−1)(+1)
+ 13

(x− 1)(x− 2)

(−2)(+1)

(C) 1
(x− 12)(x− 13)

(−1)(−2)
+ 2

(x− 11)(x− 13)

(+1)(−1)
+ 3

(x− 11)(x− 12)

(+2)(+1)

(D) 1
(x− 12)(x− 13)

(−1)(+2)
+ 2

(x− 11)(x− 13)

(−1)(+1)
+ 3

(x− 11)(x− 12)

(−2)(+1)

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 18/ 53

Newton Basis

Can we add a new data point without changing the entire interpolant?

• Need n→ n+ 1, would prefer well-conditioned and easy to
construct and evaluate

• In order to easily add points, we need φj(x) to have certain
properties:

• New basis function cannot disturb prior interpolation: φj(xi) = 0 for
i < j

• Old basis function does not need information about new data values:
φj(x) is independent of (xi, yi) for i > j

• Newton basis function

φj(x) =

j−1∏
i=0

(x− xi)

• Leads to special form for matrix A

• A is not necessarily well-conditioned, but will not be worse than the
monomial basis and can be quite good if the order of data values is
chosen wisely

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 19/ 53

Newton Interpolation Matrix

What is the form of the matrix A in Ac = y for the Newton basis
functions, and how expensive is it to solve the linear system?
(“Tridiagonal” means that the matrix only has entries on the main
diagonal and the two diagonals immediately above and below;
consequently, there are at most three nonzeros on each row or column.)

(A) A is diagonal, O(n) to solve.

(B) A is tridiagonal, O(n2) to solve.

(C) A is lower triangular, O(n2) to solve.

(D) None of the above.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 20/ 53

Newton Basis Conditioning

• We know that the Newton
basis functions are linearly
independent because φj(x)
has exactly degree j − 1.

• With abscissae xi = i/5 for
i = 0, 1, . . . , 5 the Newton
basis functions φj(x) are
shown at right (vertically
zoomed view on the bottom).

• Visually, they are not as
distinct as the Lagrange basis
functions but they are better
than the monomials.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 21/ 53

Newton Example

Construct an interpolant for data points

{(xi, yi)} = {(2, 14), (6, 24), (4, 25), (7, 15)}

using the Newton basis.

• Four basis functions

φ0(x) = 1 φ1(x) = (x− 2)

φ2(x) = (x− 6)(x− 2) φ3(x) = (x− 4)(x− 6)(x− 2)

• Construct linear system

A =


1 0 0 0
1 4 0 0
1 2 −4 0
1 5 5 15

c =


c0
c1
c2
c3

 y =


14
24
25
15


and solve Ac = y to find c ≈

[
14 2.5 −1.5 −0.2667

]T
• Check cond(A) ≈ 17

• However, if we scaled all the abscissae x̃i = 1000xi, the resulting
cond(Ã) ≈ 4.6(1012) is just as bad as for monomial basis

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 22/ 53

Newton Interpolation Practice

For the data set

{(xi, yi)} = {(1, 11), (3, 13), (2, 12)}

and the Newton basis functions φj(x) =
∏j−1
i=0 (x− xi), what is the form

of the matrix A in Ac = y?

(A)

1 1 1
0 1 2
0 0 −1

 (C)

1 0 0
1 1 0
1 2 −1


(B)

1 0 0
1 2 0
1 1 −1

 (D)

[
1 0
1 2

]

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 23/ 53

Unique Polynomial Interpolants

Polynomial interpolant of degree n is unique: any basis will produce the
same interpolant (assuming no computational errors).

• Let q(x) and p(x) be two polynomial interpolants of degree n such
that interpolation condition holds: p(xi) = yi = q(xi) for all
i = 0, 1, . . . , n

• Then u(x) = q(x)− p(x) is also a polynomial of degree n

• Note that u(xi) = q(xi)− p(xi) = yi − yi = 0 for all i = 0, 1, . . . , n,
so u(x) has n+ 1 zeros

• The only such polynomial of degree n is u(x) ≡ 0, which implies
q(x) = p(x)

• But p(x) =
∑n
j=0 cjφj(x)

• For Lagrange basis cj = yj
• For Newton and monomial bases we had to solve a linear system
Ac = y with A 6= I, so for these bases cj 6= yj

• How can this be true if p(x) is unique?

• Demonstration code: interpolateSine

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 24/ 53

Interpolation Error (part 1)

The plot above shows a polynomial interpolant of 13 data points built
using the monomial basis. Based on the fact that the data values all lie
in the interval [1,+1], we do not really believe that the wild oscillations
beyond this range shown by the interpolant accurately reflect the
behaviour of the underlying process. Based on our definitions of various
types of error, how would you classify this large apparent error?

(A) Computational error.

(B) Forward error.

(C) Relative error.

(D) None of the above.

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 25/ 53

Interpolation Error (part 2)

The plot above shows a polynomial interpolant of 26 data points built
using the monomial basis. Based on the fact that the data values all lie
in the interval [1,+1], we do not really believe that the wild oscillations
beyond this range shown by the interpolant accurately reflect the
behaviour of the underlying process. Based on our definitions of various
types of error, how would you classify this large apparent error?

(A) Computational error.

(B) Forward error.

(C) Relative error.

(D) None of the above.

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 26/ 53

Basic Polynomial Interpolation Summary

• We want to interpolate data {(xi, yi)}ni=0 using basis function set
{φj(x)}nj=0

• Interpolant is pn(x) =
∑n
j=0 cjφj(x)

• Interpolation conditions pn(xi) = yi lead to square linear system
Ac = y, where aij = φj(xi)

• Solve linear system for coefficients cj

• Interpolating polynomial is unique, but choice of basis set affects
cost of construction and evaluation, accuracy, and difficulty of
changing or adding data

basis construction evaluation bonus
set cost cost feature
monomial (1/3)n3 +O(n2) n simple
Lagrange n2 +O(n) 3n cj = yj
Newton n2 +O(n) n adaptive n

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 27/ 53

Lagrange over Newton

The advantage of using the Lagrange basis functions rather than the
Newton basis functions for polynomial interpolation is:

(A) The resulting linear system is lower triangular, and hence easier to
solve.

(B) The basis functions do not need to recomputed if an additional data
point is added.

(C) The resulting polynomial has smaller error.

(D) None of the above.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 28/ 53

Choosing Interpolant Bases I

Suppose that there are a dozen temperature sensors at fixed points along
Interstate 5 between Blaine and Bellingham. Approximately every ten
minutes each generates a new temperature reading, although readings
from different sensors are not synchronized and rarely occur at the same
time. We want an interpolant to estimate temperature as a function of
position along the interstate. We would like it to incorporate the most
recent reading from all sensors and be easy to update as new readings
arrive. Which polynomial basis set would be best for this task?

(A) Monomial with φj(x) = xj , where x measures kilometers from
Blaine.

(B) Monomial with φj(x) = (x− xmid)
j , where x measures kilometers

from Blaine and xmid is half the distance between Blaine and
Bellingham.

(C) Lagrange.

(D) Newton.

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 29/ 53

Choosing Interpolant Bases II

We are constructing a plot of the temperature with respect to time
outside Dempster for today, starting at 08:00 and continuing until 18:00.
After every class we go outside and record the current temperature and
the time at which that reading was made. We want to keep a plot of our
interpolant—up to and including the most recent reading—on our web
site, but we do not have long between classes so we need to minimize the
amount of work done when each new reading becomes available. Which
polynomial basis set would you recommend?

(A) Monomial with φj(t) = tj .

(B) Monomial with φj(t) = (t− 13 : 00)j

(C) Lagrange.

(D) Newton.

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 30/ 53

Divided Differences

• An alternative method of determining the coefficients for a Newton
basis interpolating polynomial

• Used more often than the standard method of constructing and
solving a linear system

• Makes it easier to add and delete data points

• Have an interesting connection with function derivatives

• A tool with which we will analyze interpolation error

• Are defined recursively

f [xi] = yi f [xi, . . . , xj] =
f [xi+1, . . . , xj]− f [xi, . . . , xj−1]

xj − xi

• The coefficients for Newton interpolation are just cj = f [x0, . . . , xj]
(the diagonal elements in the table)

• To add another data point (n→ n+ 1), just add another row to the
table (assuming that the abscissae are unique)

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 31/ 53

Divided Difference Example

Given data {(xi, yi)} = {(0, 0), (2, 6), (1, 0)}
• Divided difference table

i xi f [xi] f [xi−1, xi]

0 x0 = 0 f [x0] = y0 = 0 —

1 x1 = 2 f [x1] = y1 = 6 f [x0, x1] = f [x1]−f [x0]
x1−x0

= 3

2 x2 = 1 f [x2] = y2 = 0 f [x1, x2] = f [x2]−f [x1]
x2−x1

= 6

i f [xi−2, xi−1, xi]

0 —
1 —

2 f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

= 3

• So the Newton interpolants are:

p0(x) = 0

p1(x) = 0 + 3(x− 0) = 3x

p2(x) = 0 + 3(x− 0) + 3(x− 0)(x− 2) = 3x2 − 3x

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 32/ 53

Divided Difference Example Continued

What if we add a new data point (x3, y3) = (−1, 0)?

• Add a new row and column to the divided difference table

xi f [xi] f [xi−1, xi] f [xi−2, . . . , xi] f [xi−3, . . . , xi]

0 0 — — —
+2 +6 +3 — —
+1 0 +6 +3 —

−1 0 0 +2 f [x1,x2,x3]−f [x0,x1,x2]
x3−x0

= +1

• Cubic Newton basis interpolant:

p3(x) = 3x2 − 3x+ 1(x− 0)(x− 2)(x− 1) = x3 − x

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 33/ 53

Divided Difference Table Practice

Consider the data points

{(xi, yi)}ni=0 = {(1, 21), (2, 32), (4, 64), (8, 88)}.

What are the missing entries in the divided difference table?

xi f [xi] f [xi−1, xi] f [xi−2, . . . , xi] f [xi−3, . . . , xi]

1 21 A
2 32 11
4 64 16 C
8 88 B −5/3 D

(A) A = 11, B = 12, C = 5, D = −15.

(B) A blank, B = 6, C = 5/3, D = −10/21.

(C) A blank, B = 6, C = 5/2, D = −25/42.

(D) A blank, B = 6, C = 5/2, D = −25/6.

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 34/ 53

Divided Difference Interpolant Practice

Consider the data points

{(xi, yi)}ni=0 = {(+2, 1), (0, 3), (−2, 2), (+4, 12)},

which generate the following divided difference table. What is the
Newton interpolating polynomial?

xi f [xi] f [xi−1, xi] f [xi−2, . . . , xi] f [xi−3, . . . , xi]

2 1
0 3 −1
−1 2 1 −2/3
4 12 2 1/4 11/24

(A) 12 + 2(x− 2) + 1
4 (x− 2)(x) + 11

24 (x− 2)(x)(x+ 2)

(B) 12 + 2(x− 4) + 1
4 (x− 4)(x+ 2) + 11

24 (x− 4)(x+ 2)(x)

(C) 1− 1(x− 2)− 2
3 (x− 2)(x) + 11

24 (x− 2)(x)(x+ 2)

(D) 1− 1(x− 4)− 2
3 (x− 4)(x+ 2) + 11

24 (x− 4)(x+ 2)(x)

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 35/ 53

Divided Differences & Derivatives

Imagine that yi = f(xi) for some unknown but sufficiently smooth
function f(x) (eg: f(x) has enough derivatives)

• In these cases, we will write the data values as {(xi, f(xi))}ni=0

• There is a connection between the derivatives of f and the divided
differences: if {xi, . . . , xi+k} are k + 1 distinct points with
a = min` x` and b = max` x`, then there exists ξ ∈ [a, b] such that

f [xi, . . . , xi+k] =
1

k!

dkf(ξ)

dxk
=
f (k)(ξ)

k!

• For example, for x0 < x1 there exists ξ such that x0 ≤ ξ ≤ x1 and

f [x0, x1] =
f(x1)− f(x0)

x1 − x0
= f ′(ξ)

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 36/ 53

Divided Differences & Derivatives Practice

If you are given data samples

{(xi, f(xi))}ni=0 = {(1, 11), (5, 55), (3, 33), (2, 22)}

which were drawn from some sufficiently smooth but unknown function
f(x), which of the following is true?

(A) ∃ξ ∈ [1, 5] such that f [1, 5, 3] = 1
2f

(2)(ξ).

(B) ∃ξ ∈ [1, 5] such that f [1, 5, 3, 2] = 1
2f

(2)(ξ).

(C) ∃ξ ∈ [1, 3] such that f [1, 5, 3] = 1
6f

(3)(ξ).

(D) ∃ξ ∈ [1, 3] such that f [1, 5, 3] = 1
2f

(2)(ξ).

A B C D

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 37/ 53

Divided Difference & Derivatives Example

• Divided difference table from earlier with data

{(0, 0), (2, 6), (1, 0), (−1, 0)}

actually used yi = f(xi) = x3i − xi to generate the data values

• So the true derivatives are f ′(x) = f (1)(x) = 3x2 − 1,
f ′′(x) = f (2)(x) = 6x and f (3)(x) = 6

• Observe

f [x0, x1] = 3⇒ ∃ξ ∈ [0, 2] st f ′(ξ) = 3; eg: ξ =
√

4/3 ≈ 1.15

f [x1, x2] = 6⇒ ∃ξ ∈ [1, 2] st f ′(ξ) = 6; eg: ξ =
√

7/3 ≈ 1.53

f [x2, x3] = 0⇒ ∃ξ ∈ [−1,+1] st f ′(ξ) = 0; eg: ξ = ±
√

1/3 ≈ ±0.58

f [x0, x1, x2] = 3⇒ ∃ξ ∈ [0, 2] st 1/2f ′′(ξ) = 3; eg: ξ = 1

f [x1, x2, x3] = 2⇒ ∃ξ ∈ [−1, 2] st 1/2f ′′(ξ) = 2; eg: ξ = ±2/3

f [x0, x1, x2, x3] = 1⇒ ∃ξ ∈ [−1,+2] st 1/6f (3)(ξ) = 1; eg: any ξ

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 38/ 53

Osculating Interpolation

What if we are given more than just the data value at each abscissae?

• For example, given {(xi, yi, y′i)}
q
i=0 = {(xi, f(xi), f

′(xi))}qi=0

• We want the interpolant to match whatever data we have available;
in this case

p(xi) =

n∑
j=0

cjφj(x) = f(xi) p′(xi) =

n∑
j=0

cjφ
′
j(x) = f ′(xi)

• The resulting p(x) is called an osculating interpolant
• How many basis functions do we need?

• We can take this set of equations and form it into a linear system to
solve for the coefficients

• Works for any set of (linearly independent) basis functions
• Works for any type of data; for example, given f ′′(xi) as well, or

different numbers of derivatives and data values for each abscissa

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 39/ 53

Osculating Interpolation Linear System Practice

Given basis set {φj(x)}nj=0 (where you can choose n) and the data set
{(x0, f(x0), f ′(x0)), (x1, f(x1), f ′(x1))}, what linear system helps us
construct an osculating interpolant?

(A)


φ0(x0) φ1(x0) φ2(x0) φ3(x0)
φ0(x1) φ1(x1) φ2(x1) φ3(x1)
φ0(x0) φ1(x0) φ2(x0) φ3(x0)
φ0(x1) φ1(x1) φ2(x1) φ3(x1)



c0
c1
c2
c3

 =


f(x0)
f(x1)
f ′(x0)
f ′(x1)



(B)


φ0(x0) φ1(x0) φ2(x0) φ3(x0)
φ′0(x0) φ′1(x0) φ′2(x0) φ′3(x0)
φ0(x1) φ1(x1) φ2(x1) φ3(x1)
φ′0(x1) φ′1(x1) φ′2(x1) φ′3(x1)



c0
c1
c2
c3

 =


f(x0)
f ′(x0)
f(x1)
f ′(x1)



(C)


φ0(x0) φ1(x0)
φ′0(x0) φ′1(x0)
φ0(x1) φ1(x1)
φ′0(x1) φ′1(x1)

[c0c1
]

=


f(x0)
f ′(x0)
f(x1)
f ′(x1)



(D)


φ0(x0) φ1(x0) φ2(x0) φ3(x0)
φ0(x1) φ1(x1) φ2(x1) φ3(x1)
φ′0(x0) φ′1(x0) φ′2(x0) φ′3(x0)
φ′0(x1) φ′1(x1) φ′2(x1) φ′3(x1)



c0
c1
c2
c3

 =


f(x0)
f(x1)
f ′(x0)
f ′(x1)


CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 40/ 53

Osculating Interpolant Practice

Given basis set {φj(x)}nj=0 (where you can choose n) and the data set
{(x0, f ′(x0)), (x1, f(x1), f ′(x1)), (x2, f(x2))}, we solved the following
linear system. What is the corresponding osculating interpolant?

φ′0(x0) φ′1(x0) φ′2(x0) φ′3(x0)
φ0(x1) φ1(x1) φ2(x1) φ3(x1)
φ′0(x1) φ′1(x1) φ′2(x1) φ′3(x1)
φ0(x2) φ1(x2) φ2(x2) φ3(x2)



c0
c1
c2
c3

 =


f ′(x0)
f(x1)
f ′(x1)
f(x2)


(A) p(x) =

3∑
j=0

cjφj(x).

(B) p(x) =
1∑
j=0

cjφj(x) +
2∑
j=1

cjφ
′
j(x).

(C) p(x) = c0φ
′
0(x) + c1φ1(x) + c2φ

′
1(x) + c3φ2(x).

(D) p(x) =
2∑
j=0

cjφj(x).

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 41/ 53

Osculating Interpolation & Divided Differences

We can also build an osculating interpolant for data of the form
{(xi, f(xi), f

′(xi))}qi=0 with the Newton basis and a modified divided
difference table

• Replicate abscissae: our new abscissae will be x̃

(x̃0, x̃1, x̃2, x̃3, . . . , x̃n−1, x̃n) = (x0, x0, x1, x1, . . . , xq, xq),

and use the standard Newton basis polynomial

pn(x) =

n∑
j=0

f [x̃0, . . . , x̃j]

(
j−1∏
k=0

(x− x̃k)

)

• But we cannot compute f [x̃k−1, x̃k] if x̃k−1 = x̃k
• Instead, take advantage of the relationship between divided

differences and derivatives; for example

f [x̃k−1, x̃k] =

{
f [x̃k]−f [x̃k−1]

x̃k−x̃k−1
, if x̃k−1 6= x̃k;

f ′(x̃k)
1!

if x̃k−1 = x̃k

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 42/ 53

Osculating Interpolation Example

Given data x0 = 20, y0 = 100, y′0 = 10, y′′0 = 2, x1 = 10 and y1 = 0,
construct a divided difference table and then an osculating polynomial
interpolant of maximum degree.

• Divided difference table (after replicating the abscissae as necessary)

x̃i f [x̃i] f [x̃i−1, x̃i] f [x̃i−2, . . . , x̃i] f [x̃i−3, . . . , x̃i]

20 100 — — —
20 100 10 — —
20 100 10 1 —
10 0 10 0 0.1

• The resulting interpolant is determined just like the standard
Newton basis interpolant from a divided difference table

p(x) =

n∑
j=0

f [x̃0, . . . , x̃j]

j−1∏
k=0

(x− x̃k)

= 100 + 10(x− 20) + (x− 20)2 + 0.1(x− 20)3

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 43/ 53

Osculating Interpolation
Divided Different Table Practice

Fill in the divided difference table given data:

{(xi, yi, y′i, y′′i)}ni=0 = {(1.0, 1.1, 1.2, 1.4), (2.0, 2.1, 2.2, 2.4)}

xi f [x̃i] f [x̃i−1, x̃i] f [x̃i−2, . . . , x̃i] f [x̃i−3, . . . , x̃i] f [x̃i−4, . . . , x̃i]

1 1.1
1 1.1 B
A 1.1 1.2 D
2 2.1 C (1.0−1.2)/1 −0.9
2 2.1 2.2 (2.2−1.0)/1 1.4 2.3

(A) A = 2, B = 0.0, C = 1.0, D = 1.4.

(B) A = 1, B = 1.2, C = 2.1, D = 1.4.

(C) A = 1, B = 1.2, C = 1.0, D = 0.7.

(D) A = 1, B = 0.0, C = 2.1, D = 0.7.

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 44/ 53

Osculating Interpolant Practice

What is the osculating interpolant generated by this divided difference
table?

xi f [x̃i] f [x̃i−1, x̃i] f [x̃i−2, . . . , x̃i] f [x̃i−3, . . . , x̃i] f [x̃i−4, . . . , x̃i]

1 1.1
1 1.1 1.2
2 2.1 2.2 1.0
2 2.1 2.2 2.0 1.0
2 2.1 2.2 2.0 1.4 0.4

(A) 1.1+1.2(x−1)+1.0(x−1)(x−2)+1.0(x−1)2(x−2)+0.4(x−1)2(x−2)2

(B) 1.1 + 1.2(x− 1) + 1.0(x− 1)2 + 1.0(x− 1)2(x− 2) + 0.4(x− 1)2(x− 2)2

(C) 2.1+2.2(x−1)+2.0(x−1)(x−2)+1.4(x−1)2(x−2)+0.4(x−1)2(x−2)2

(D) 2.1 + 2.2(x− 1) + 2.0(x− 1)2 + 1.4(x− 1)2(x− 2) + 0.4(x− 1)2(x− 2)2

A B C D
CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 45/ 53

(Forward) Error Analysis for
Polynomial Interpolation Approximation

Assume that {yi}ni=0 are drawn from some underlying but unknown
function f(x); in other words, yi = f(xi)

• We would like to estimate the error in the (unique) interpolating
polynomial pn(x)

en(x) = f(x)− pn(x)

and see how it depends on the choice of n and the properties of f

• To find e(x̃) for some x̃ /∈ {xi}ni=0, pretend that we are adding the
new data point (x̃, f(x̃))

• Using the properties of the Newton basis and divided differences

f(x̃) = pn+1(x̃) = pn(x̃) + f [x0, . . . , xn, x̃]
n∏
j=0

(x̃− xj)

or by rearranging

en(x̃) = f(x̃)− pn(x̃) = f [x0, . . . , xn, x̃]
n∏
j=0

(x̃− xj)

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 46/ 53

Polynomial Interpolation Error Analysis Continued

Error: en(x̃) = f(x̃)− pn(x̃) = f [x0, . . . , xn, x̃]
∏n
j=0(x̃− xj)

• Let a = mini xi, b = maxi xi and assume x̃ ∈ [a, b] (otherwise
pn(x̃) is “extrapolating”)

• We had a relationship between divided differences and derivatives

∃ξ ∈ [a, b] such that f [x0, . . . , xn, x̃] = f(n+1)(ξ)
(n+1)!

• So we can take upper bounds to find

|en(x̃)| ≤ max
ξ∈[a,b]

|f (n+1)(ξ)|
(n+ 1)!

max
ζ∈[a,b]

∣∣∣∣∣∣
n∏
j=0

(ζ − xj)

∣∣∣∣∣∣
‖en‖∞ ≤

‖f (n+1)‖∞
(n+ 1)!

(b− a)n+1

• In CPSC 303, we will always use the infinity norm or max norm for
functions: ‖g‖∞ = maxx |g(x)|

• See Heath interactive modules on error bounds and convergence

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 47/ 53

Interpolation Error Example I

Consider interpolating f(x) = sin(2πx) on the interval x ∈ [0,+1]. From
our error formula:

|e0(x)| ≤ ‖f
′‖

1!
(b− a) = ‖2π cos(2πx)‖(1) ≤ 2π

|e1(x)| ≤ ‖f
′′‖

2!
(b− a)2 = 1

2
‖ − 4π2 sin(2πx)‖(1)2 ≤ 2π2

|e2(x)| ≤ ‖f
(3)‖
3!

(b− a)3 = 1
6
‖ − 8π3 cos(2πx)‖(1)3 ≤ 4

3
π3

|e3(x)| ≤ ‖f
(4)‖
4!

(b− a)4 = 1
24
‖16π4 sin(2πx)‖(1)4 ≤ 2

3
π4

...

|en(x)| ≤ ‖f
(n+1)‖

(n+ 1)!
(b− a)n+1 =

(2π)n+1(1)n+1

(n+ 1)!

Since (n+ 1)! will eventually dominate zn+1 for any fixed z, (in this case
z = 2π) the error decreases as n increases and the interpolant gets better.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 48/ 53

Interpolation Error Example II

In interpolateSine.m the actual function was f(x) = sin(20πx) so the
same error bound works out to

|en(x)| ≤ ‖f
(n+1)‖

(n+ 1)!
(b− a)n+1 =

(20π)n+1(1)n+1

(n+ 1)!

• It is true that (n+ 1)! will still eventually dominate (20π)n+1, but n
will have to be a lot bigger.

• In interpolateSine.m we used a monomial basis, so the linear
system became very ill-conditioned around n ≈ 20 (where n is still
too small for the factorial to dominate).

• Therefore, we never got a good fit: by the time the factorial term
dominates, the linear system is so ill-conditioned that roundoff error
destroys any accuracy in the coefficients.

• We could overcome this problem with the Lagrange basis, although
we will still need either small or large n to keep the error small.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 49/ 53

Interpolation Error Example III

Now consider Runge’s example f(x) = (1 + 25x2)−1 for x ∈ [−1,+1].
Although (b− a) = 2 and ‖f‖ = 1, the ‖f (n+1)‖ grow quickly (in fact, in
a manner related to the factorial), so |en(x)| grows rapidly with n (see
interpolateRunge.m for confirmation)

|e0(x)| ≤ ‖f
′‖

1!
(b− a) = ‖ − 50x(1− 25x2)−2‖(2) ≤ 100|x|‖f‖2

|e1(x)| ≤ ‖f
′′‖

2!
(b− a)2

=
1

2

∥∥∥∥ 5000x2

(1 + 25x2)3
− 50

(1 + 25x2)2

∥∥∥∥ (2)2 ≤ 2500|x|2‖f‖3 − 25‖f‖2

|e2(x)| ≤ ‖f
(3)‖
3!

(b− a)3 ≤ 1
6

(
−750000|x|3‖f‖4 − 15000|x|‖f‖3

)
(2)3

...

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 50/ 53

Will Additional Data Reduce the Error?

Consider the following challenge:

• You have an interpolant pn(x) constructed from data samples
{(xi, f(xi))}ni=0, where xi ∈ [a, b] = [0, 1]

• You are given a new data sample (xn+1, f(xn+1)) with which you
could form a new interpolant pn+1(x).

• Under what conditions on n, f , a = 0, b = 1, xi and/or f(xi) can
you guarantee that the bound on the error in pn+1(x) is smaller
than the bound on the error in pn(x)?

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 51/ 53

Chebyshev Points

Our error bound construction was not entirely fair.

‖en‖∞ ≤ max
ξ∈[a,b]

|f (n+1)(ξ)|
(n+ 1)!

max
ζ∈[a,b]

∣∣∣∣∣
n∏
j=0

(ζ − xj)

∣∣∣∣∣ ≤ ‖f (n+1)‖∞
(n+ 1)!

(b− a)n+1

• If we choose the xj wisely, we can get a much lower bound on the
term maxζ |

∏
j(ζ − xj)|

• The best such xj are called the Chebyshev points, which on the
interval [−1,+1] are

xi = cos

(
2i+ 1

2(n+ 1)
π

)
i = 0, 1, 2, . . . n

• For another interval [a, b] use x̃i = a+ (1/2)(b− a)(xi + 1)

• Bound (for interval [−1,+1]) is maxζ |
∏
j(ζ − xj)| ≤ 2−n and

|en(x̃)| ≤ max
ξ∈[−1,+1]

|f (n+1)(ξ)|
2n(n+ 1)!

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 52/ 53

Example of Interpolation with Chebyshev Points

Consider Runge’s function f(x) = (1 + 25x2)−1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2
Runge’s function and interpolants with equally spaced abscissae

x

f(
x)

true function
n = 4
n = 8
n = 16

Interpolated with equally spaced
abscissae

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

2
Runge’s function and interpolants with Chebyshev abscissae

x

f(
x)

true function
n = 4
n = 8
n = 16

Interpolated with the Chebyshev
abscissae

Despite the rapid growth in the magnitude of the derivatives of Runge’s
function, the error of the interpolants using the Chebyshev points is well
controlled.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 53/ 53

	Interpolation Background
	Polynomial Bases
	Divided Differences
	Osculating Interpolation
	Polynomial Interpolation Error

