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Outline

• Background

• Problem statement and motivation
• Formulation: The linear system and its conditioning

• Polynomial bases

• Monomial
• Lagrange
• Newton
• Uniqueness of polynomial interpolant

• Divided di↵erences

• Divided di↵erence tables and the Newton basis interpolant
• Divided di↵erence connection to derivatives

• Osculating interpolation: interpolating derivatives

• Error analysis for polynomial interpolation

• Reducing the error using the Chebyshev points as abscissae
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Interpolation Motivation

We are given a collection of data samples {(xi, yi)}ni=0

• The {xi}
n
i=0 are called the abscissae (singular: abscissa),

the {yi}ni=0 are called the data values

• Want to find a function p(x) which can be used to estimate y(x) for
x 6= xi

• Why? We often get discrete data from sensors or computation, but
we want information as if the function were not discretely sampled

• If possible, p(x) should be inexpensive to evaluate for a given x
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Lagrange Basis Conditioning

The Lagrange basis functions Lj(x) are clearly distinct. With abscissae
xi = i/5 for i = 0, 1, . . . , 5 the Lagrange basis function Lj(x) are shown
below.

CPSC 303 Notes 2 Ian M. Mitchell — UBC Computer Science 16/ 53



Basic Polynomial Interpolation Summary

• We want to interpolate data {(xi, yi)}ni=0 using basis function set
{�j(x)}nj=0

• Interpolant is pn(x) =
Pn

j=0 cj�j(x)
• Interpolation conditions pn(xi) = yi lead to square linear system

Ac = y, where aij = �j(xi)
• Solve linear system for coe�cients cj

• Interpolating polynomial is unique, but choice of basis set a↵ects
cost of construction and evaluation, accuracy, and di�culty of
changing or adding data

basis construction evaluation bonus
set cost cost feature
monomial (1/3)n3 +O(n2) n simple
Lagrange n2 +O(n) 3n cj = yj
Newton n2 +O(n) n adaptive n
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Linear Algebra W o Linear Algebra

Say we want to find

Xxl C C X t zX

to fit data Byo 13,4 5 Yz

Any solution essentially solving

co 12C t 4 Cz Yo
co 34 9 a y
co 154 25 Cz Yz

Does this have a unique solution

theory 3 3 system has uniqueSol I homog form

has unique solution

co 12C t 4 Cz C

a same g smitten
c t 54 25 ca

f
Is there a unique Ci Cz Cz namely Ci Cr 5 0

sit
X Co C X Cz XZ



has V12 VC31 45 O

is there unique Vex Sst Ux models

2,0 3 o 5,0

If Ux deg E 2 polynomial has roots
X Z x 3 X'S then veil must be 0

it xx x 2 x 3 X 5 SETE
poly

must have Vaso

z v x has roots at 2,3 5

Rolle's thin V'Cx has roots 2,3
3,51

X n between 2,5
so

Cx C c Xt Z

u c Z'Cz
Cz 50

v x Scot C X so v has a root C so

b
C 9 0

Similarly Coto



Say VIX Rok Co 4 X C t 42Gt Cz

fit to y Ct y MHz

i i i lil

has unique solution

vcxois.io VG O uke O get a

unique Sol Val 0

If Xo X then 2 rows same i

what happens if Xo yo 4,4 Xx Yz
11

Xo y
Say pohnenids

yfxi.fi
co 12C t 4 Cz C

a 24 4 a g Tiffin
cot 54 25 c



what if Xo X are very near 2

Co 12C 14 Cz 0

Co 2.14 12.1172 0

cot 54 25 ca O

2 I 2.01 2.001,2 etc

Before this nel Wx Cot XC

fit 2 yo C 2 8,4 E Ice
solve

co 1 2 C yo condition numbi

c even y

c 2C yo f
g

Ec Yo Yo

care y

yC Yi Yok I



Say differentiable fix fit data
f4 o

Xa fka C XE E flxate

Yo Y

Next time condition number


