CPSC 303: MIDTERM PRACTICE QUESTIONS, SET 2

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All questions on Homework 1–6 should be considered midterm practice.

- (1) True/False
 - (a) The *p*-norm of the matrix

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

is |a| + |b| for p = 1, p = 2, and $p = \infty$.

- (b) The ∞ -norm of a matrix is the maximum sum of the absolute values of the entries in any row.
- (c) The 1-norm of a matrix is the maximum sum of the absolute values of the entries in any column.
- (d) The 2-norm of any nonzero matrix is positive.
- (e) The ∞ -norm of any nonzero matrix is positive.
- (f) There is a unique polynomial p(x) of degree at most 3 such that p(1) = 2020, p'(1) = 2021, p''(1) = 2022.
- (g) There is a unique polynomial p(x) of degree at most 3 such that p(1) = 2020, p'(1) = 2021, p''(1) = 2022, p(2) = 303.
- (2) Circle the correct numeral (i, ii, iii, or iv) in each of the following questions.
 - (a) For any real a, b, the *p*-norm of

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

equals |a| + |b| for

- (i) p = 1 only
- (ii) p = 2 only
- (iii) $p = \infty$ only
- (iv) all of the above

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

(b) If A is an $n \times n$ matrix, and M is the largest absolute value of an entry of A, then the inequality

$$M \le \|A\|_p \le nM$$

holds for

(i) p = 1 only

(ii) p = 2 only

(iii) $p = \infty$ only

(iv) all of the above

(c) If A is an $n \times n$ matrix diagonal matrix with diagonal entries d_1, \ldots, d_n , then

 $||A||_p = \max(|d_1|, \dots, |d_n|)$

holds for

(i) p = 1 only

(ii)
$$p = 2$$
 only

(iii)
$$p = \infty$$
 only

- (iv) all of the above
- (3) For $p = 1, 2, \infty$, find the *p*-condition number (i.e., *p*-norm condition number) of the matrix:

[1	. 0	0	0
0	2	0	$\begin{bmatrix} 0\\0\\0\\4 \end{bmatrix}$
0	0 0	3	0
0	0 0	0	4

- (4) Use the "error in polynomial interpolation" to bound from above the error in interpolating $\sin x$ in [0, 2] by the polynomial $p_2(x)$ that interpolates $\sin x$ at the three points 0, 1, 2.
- (5) Use the "error in polynomial interpolation" to bound from above the error in interpolating x^3 in [0, 2] by the polynomial $p_2(x)$ that interpolates x^3 at the three points 0, 1, 2. Is your bound from above tight?
- (6) Use the "error in polynomial interpolation" to bound from above the error in interpolating x^2 in [0, 2] by the polynomial $p_2(x)$ that interpolates x^2 at the three points 0, 1, 2. Is your bound from above tight?
- (7) Use the formula

$$\cos(4\theta) = 8\cos^4\theta - 8\cos^2\theta + 1$$

to write down a formula for the Chebyshev polynomial $T_4(x)$.

- (8) Let $\epsilon \in \mathbb{R}$.
 - (a) Derive a formula for the secant line at x = 4 and $x = 4 + \epsilon$ for a function $f : \mathbb{R} \to \mathbb{R}$.
 - (b) How does the divided difference $f[4, 4 + \epsilon]$ relate to your formula in part (a)?
 - (c) Find the ∞ -condition number of

 $\begin{bmatrix} 1 & 4 \\ 1 & 4+\epsilon \end{bmatrix}$

 $\mathbf{2}$

- (d) How does the condition number above relate to the equations needed to find the secant line? What does this tell you as $\epsilon \to 0$?
- (9) Use the "divided difference derivative" formula to bound the value of:
 - (a) f[0, 1/2, 1] for $f(x) = e^x$;
 - (b) f[0, 1/2, 1] for $f(x) = \sin x$;
 - (c) f[0, 1/2, 1] for $f(x) = x^2$;
 - (d) f[0, 2/3, 1] for $f(x) = x^2$;
 - (e) f[0, 2/3, 1] for $f(x) = x^3$;

 - (f) f[0, 1/2, 2/3, 1] for $f(x) = x^2$; (g) f[0, 1/2, 2/3, 1] for $f(x) = x^5$;
- (10) Show that there is a polynomial $p(y) = (y y_0)(y y_1)$ for some $y_0, y_1 \in \mathbb{R}$ such that

$$\max_{2 \le y \le 3} |p(y)| = 1/8.$$

What are y_0, y_1 ?

[Hint 1: Recall that the degree two Chebyshev polynomial is $T_2(x) = 2x^2 - 1$. Consider the linear map g(x) taking [-1,1] to [2,3] given by g(x) = x/2 + 5/2, and the inverse map $g^{-1}(y) = 2y - 5$ (which therefore takes [2,3] to [-1,1].

[Hint 2: Alternatively, you can think of parabolas symmetric about x =5/2.]

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf