CPSC 303: MIDTERM PRACTICE QUESTIONS, SET 1, BRIEF SOLTIONS

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All questions on Homework 1–6 should be considered midterm practice.

- (1) What is the largest normal positive number in double precision? Solution: $2^{1023}(2-2^{-52})$ (or, equivalently, $2^{1024}(1-2^{-53})$).
- (2) What is the smallest normal positive number in double precision? Solution: 2^{-1022}
- (3) What is the largest subnormal positive number in double precision? Solution: $(1 2^{-52}) \cdot 2^{-1022}$
- (4) What is the smallest subnormal positive number in double precision? Solution: 2^{-1074}
- (5) In double precision, are the values of:

Inf - Inf, Inf + Inf, Inf + 2020.

Solution: Nan, Inf, Inf.

- (6) Circle the correct numeral (i, ii, iii, or iv) in each of the following questions.
 - (a) Normal numbers in double precision have roughly:
 - (i) 530 bits of precision
 - (ii) 53 bits of precision
 - (iii) 530 digits of precision
 - (iv) 53 digits of precision

Solution: ii

- (b) In double precision, a number that is 10^7 (which is roughly 2^{23}) times larger than 2^{-1074} is stored with roughly
 - (i) 7 bits of precision
 - (ii) 7 digits of precision
 - (iii) 2^7 bits of precision

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

(iv) 53 bits of precision

Solution: ii

- (c) In double precision, a number that is roughly 2^9 times larger than
 - 2^{-1074} is stored with roughly
 - (i) 9 bits of precision
 - (ii) 9 digits of precision
 - (iii) 2^9 bits of precision
 - (iv) 53 bits of precision

Solution: i

- (d) In double precision, a number that is roughly 2^{100} times larger than 2^{-1074} is stored with roughly
 - (i) 100 bits of precision
 - (1) 100 bits of precision
 - (ii) 100 digits of precision
 - (iii) 2^{100} bits of precision
 - (iv) 53 bits of precision

Solution: iv

- (e) In double precision, a number that is roughly 2^{100000} times larger than 2^{-1074} is stored with roughly
 - (i) 100 bits of precision
 - (ii) 100 digits of precision
 - (iii) 2^{100} bits of precision
 - (iv) none of the above

Solution: iv–it is stored as Inf

- (f) In double precision, the expression 3^m number is evaluated exactly for a postive integer m iff
 - (i) $3^m \le 2^{53} 1$
 - (ii) $m \le 53$
 - (iii) $3^m \le 2^{1024} 1$.
 - (iv) $3^m \le 2^{1023}(2-2^{-52}).$
 - Solution: i
- (7) Consider the recurrence

$$x_{n+2} = 2x_{n+1} + x_n.$$

- (a) What is the general solution of this equation? Write this in the form $C_1r_1^n + C_2r_2^n$ for some $r_1, r_2 \in \mathbb{R}$. Solution: r_1, r_2 are $1 \pm \sqrt{2}$
- (b) What is the solution to this recurrence in the case $x_0 = 1$ and $x_1 = 1 \sqrt{2}$? Solution: $x_n = (1 \sqrt{2})^n$
- (c) If you numerically compute the values of x_2, x_3, \ldots of this recurrence starting with $x_0 = 1$ and $x_1 = 1 \sqrt{2}$, for n large what will $|x_n|$ be reported as:
 - (i) Inf
 - (ii) 0 or some periodically repeating sequence of subnormal numbers.
 - (iii) Nan
 - (iv) 10^m where m is roughly between -15 and -19.
 - Solution: (i). A similar experiment was done with the Fibonacci recurrence on Jan 10 in class and Homework 2, Problem 1, parts (e,f); due to roundoff you will numerically observe a solution that looks like $C_1(1 + \sqrt{2})^n + C_2(1 \sqrt{2})^n$ with

 $C_2 = 1$ but C_1 very small (but not exactly zero). Hence as $n \to \infty$, the $C_1(1 + \sqrt{2})^n$ will be dominant; hence MATLAB reports $|x_n|$ as going beyond the limit of double precision. Since the recurrence for x_{n+2} involves only positive coefficients, x_n will be reported as Inf or -Inf for some large n (depending on the sign of C_1). Hence $|x_n|$ will be reported as Inf.

- (d) What is the solution to this recurrence in the case $x_0 = 1$ and $x_1 = 1 + \sqrt{2}$? Solution: $x_n = (1 + \sqrt{2})^n$
- (e) If you numerically compute the values of x_2, x_3, \ldots of this recurrence starting with $x_0 = 1$ and $x_1 = 1 + \sqrt{2}$, for n large what will $|x_n|$ be reported as:
 - (i) Inf
 - (ii) 0 or some periodically repeating sequence of subnormal numbers.(iii) Nan
 - (iv) 10^m where m is roughly between -15 and -19.

Solution: (i)

(8) Consider the recurrence

$$x_{n+2} = (8/7)x_{n+1} - (1/7)x_n$$

- (a) What is the general solution of this equation? Write this in the form $C_1r_1^n + C_2r_2^n$ for some $r_1, r_2 \in \mathbb{R}$.
- (b) What is the solution to this recurrence in the case $x_0 = 1$ and $x_1 = 1/7$?
- (c) This part is **multiple choice**: If you numerically compute the values of x_2, x_3, \ldots of this recurrence starting with $x_0 = 1$ and $x_1 = 1/7$, for n large what will $|x_n|$ be reported as:
 - (i) Inf
 - (ii) 0 or some periodically repeating sequence of subnormal numbers.
 - (iii) Nan
 - (iv) 10^m where m is roughly between -15 and -19.

Solution: (iv); see Homework 1; since $r_1, r_2 = 1, 1/7$, the division by 7 has the same immediate roundoff/truncation error as in Problem 2 and 4 of Homework 1.

(9) Consider the recurrence

$$x_{n+2} = (9/8)x_{n+1} - (1/8)x_n.$$

- (a) What is the general solution of this equation? Write this in the form $C_1r_1^n + C_2r_2^n$ for some $r_1, r_2 \in \mathbb{R}$. Solution: $r_1, r_2 = 1, 1/8$
- (b) What is the solution to this recurrence in the case $x_0 = 1$ and $x_1 = 1/8$?
- (c) This part is **multiple choice**: If you numerically compute the values of x_2, x_3, \ldots of this recurrence starting with $x_0 = 1$ and $x_1 = 1/8$, for n large what will $|x_n|$ be reported as:
 - (i) Inf
 - (ii) 0 or some periodically repeating sequence of subnormal numbers.
 - (iii) Nan
 - (iv) 10^m where m is roughly between -15 and -19.

Solution: (ii). This is similar to Problems 1 and 3 on Homework 1.

(10) Consider the recurrence

 $x_{n+2} = x_{n+1} + 6x_n.$

- (a) What is the general solution of this equation? Write this in the form $C_1r_1^n + C_2r_2^n$ for some $r_1, r_2 \in \mathbb{R}$. Solution: $r_1, r_2 = 3, -2$
- (b) What is the solution to this recurrence in the case $x_0 = 2$ and $x_1 = 1$? Solution: $x_0 = 2$ implies $C_1 + C_2 = 2$, and $x_1 = 1$ implies $3C_1 + (-2)C_2 = 1$, which gives $C_1 = C_2 = 1$.
- (c) This part is **multiple choice**: If you numerically compute the values of x_2, x_3, \ldots of this recurrence starting with $x_0 = 2$ and $x_1 = 1$, for n large what will $|x_n|$ be reported as:
 - (i) Inf
 - (ii) 0 or some periodically repeating sequence of subnormal numbers.
 - (iii) Nan
 - (iv) 10^m where m is roughly between -15 and -19.
 - Solution: (i)

(11) Find an exact formula for

$$\begin{bmatrix} 1 & 6 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

and justify your formula. [Hint: rather than diagonalize the above 2×2 matrix, it may be easier to relate this to a recurrence equation.] Solution: This is related to the recurrence

$$x_{n+2} = x_{n+1} + 6x_n;$$

since the solution to this recurrence with $x_1 = 1$ and $x_0 = 2$ is $x_n = 3^n + (-2)^n$ we have

$$\begin{bmatrix} 1 & 6 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3^{n+1} + (-2)^{n+1} \\ 3^n + (-2)^n \end{bmatrix}$$

(see Homework 2, all problems).

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf