CPSC 303: FINAL PRACTICE QUESTIONS, SET 1, BRIEF SOLTIONS

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All questions on Homework 1–8 should be considered final exam practice.

RECALL THE FOLLOWING NOTATION AND DEFINITIONS RE-GARDING SPLINES AND Homework 7 and 8:

For fixed real numbers

$$A = x_0 < x_1 < \ldots < x_n = B,$$

and fixed $y_0, \ldots, y_n \in \mathbb{R}$, we set

(1)
$$\mathcal{U} = \mathcal{U}_{\mathbf{t},\mathbf{y}} \stackrel{\text{def}}{=} \Big\{ u \in C^2[A,B] \mid u(x_i) = y_i \text{ for all } i \Big\}.$$

Also if $f: [A, B] \to \mathbb{R}$ is any function, we have set

(2)
$$\mathcal{U} = \mathcal{U}_{f;\mathbf{t}} \stackrel{\text{def}}{=} \Big\{ u \in C^2[A, B] \mid u(x_i) = f(x_i) \text{ for all } i \Big\},$$

and if f' exists at the endpoints x_0, x_n , then we considered the "clamped boundary" subspace of $\mathcal{U}_{f;t}$ defined as

$$\left\{ u \in \mathcal{U}_{f;\mathbf{t}} \mid u'(x_0) = f'(x_0) \text{ and } u'(x_n) = f'(x_n) \right\}.$$

For a cubic spline, v(x), with endpoint x_0 and x_n and breakpoints $x_1 < \cdots < x_{n-1}$ we set

$$h_0 = x_1 - x_0, \ldots, h_{n-1} = x_n - x_{n-1},$$

and use the notation

(3)
$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 for $x_i \le x \le x_{i+1}$ for the cubic pieces of $v(s)$.

The fundamental to compute cubic splines with either the free or clamped conditions involves the equations:

(4)
$$\frac{h_{i-1}}{h_{i-1}+h_i}c_{i-1}+2c_i+\frac{h_i}{h_{i-1}+h_i}c_{i+1}=3f[x_{i-1},x_i,x_{i+1}], \quad i=1,\ldots,n-1$$

where $c_0 = c_n = 0$ for the free boundary conditions, and

 $2c_0 + c_1 = 3f[x_0, x_0, x_1]$ and $c_{n-1} + 2c_n = 3f[x_{n-1}, x_{n-1}, x_n]$

Research supported in part by an NSERC grant.

under clamped boundary conditions.

In particular, if we consider the spline with all h_i equal, then our algorithm for the free boundary spline reduces to the equation

(5)
$$((1/2)N_{\operatorname{rod},n-1}+2I)\mathbf{c}=3\mathbf{\Phi},$$

where $\mathbf{c} = (c_1, \ldots, c_{n-1})$, and where Φ is the (n-1)-dimensional vector whose *i*-th component equals $f[x_{i-1}, x_i, x_{i+1}]$ (and $c_0 = c_n = 0$). Hence we have

$$\mathbf{c} = (3/2)(I + (1/4)N_{\text{rod}})^{-1}\mathbf{\Phi}$$

Recall that σ refers to the operator on sequences $\{y_i\}_{i\in\mathbb{Z}}$ given by

$$(\sigma y)_i = y_{i+1}$$

and that we defined the difference operator $D = \sigma - 1$.

Recall that Homeworks 7 and 8 involved a number of matrices, including:

																	0				
	Γ0	1	0	0		0	0	0	0			[0	0	0	0		0	0	0	0]	
	0	0	1	0		0	0	0	0			1	0	0	0		0	0	0	0	
	0	0	0	1		0	0	0	0			0	1	0	0		0	0	0	0	
	0	0	0	0	•••	0	0	0	0			0	0	1	0	•••	0	0	0	0	
$S_{n,1} =$:	÷	÷	÷	۰.	÷	÷	÷	÷	,	$S_{n,-1} =$:	÷	÷	÷	۰.	÷	÷	÷	:	,
												0	0	0	0		0	0	0	0	
	0	0	0	0		0	0	1	0			0	0	0	0		1	0	0	0	
	0	0	0	0	•••	0	0	0	1			0	0	0	0	•••	0	1	0	0	
	0	0	0	0	• • •	0	0	0	0			0	0	0	0		0	0	1	0	
and																					

and

$$N_{\mathrm{rod},n} = S_{n,1} + S_{n,-1} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix};$$

and their variants

	[0]	1	0	0		0	0	0	0]		Γ0	0	0	0		0	0	0	1	1
	0	0	1	0		0	0	0	0		1	0	0	0	• • •	0	0	0	0	
	0	0	0	1		0	0	0	0		0	1	0	0	• • •	0	0	0	0	
	0	0	0	0		0	0	0	0		0	0	1	0	• • •	0	0	0	0	
$C_{n,1} =$:	÷	÷	÷	۰.	÷	÷	÷	:	$, C_{n,-1} =$:	÷	÷	÷	·	÷	÷	÷	÷	
	0								0		0									
	0	0	0	0		0	0	1	0		0	0	0	0		1	0	0	0	
	0	0	0	0		0	0	0	1		0	0	0	0		0	1	0	0	
	1	0	0	0	•••	0	0	0	0		0	0	0	0		0	0	1	0	

and

$$N_{\mathrm{ring},n} = C_{n,1} + C_{n,-1}.$$

One can equivalently describe the above matrices as operators: i.e., these matrices are the unique matrices such that for all $(y_1, \ldots, y_n) \in \mathbb{R}^n$:

 $S_{n,1}(y_1, \dots, y_n) = (y_2, \dots, y_n, 0)$ $S_{n,-1}(y_1, \dots, y_n) = (0, y_1, \dots, y_{n-1})$ $C_{n,1}(y_1, \dots, y_n) = (y_2, \dots, y_n, y_1)$ $C_{n,-1}(y_1, \dots, y_n) = (y_n, y_1, \dots, y_{n-1})$

For
$$k \in \mathbb{N} = \{1, 2, \dots, \},$$

 $S_{n,k} = (S_{n,1})^k, \ S_{n,-k} = (S_{n,-1})^k, \ C_{n,k} = (C_{n,1})^k, \ C_{n,-k} = (C_{n,-1})^k.$

We now recall our conventions regarding the heat equation in Homework 8; you should be aware that outside CPSC 303 this term, the literature often has different notation and conventions.

Recall that by the *heat equation* we mean the heat equation $u_t = u_{xx}$, i.e., $u_t(x,t) = u_{xx}(x,t)$ where (x,t) is a point in \mathbb{R}^2 . [In the literature outside of CPSC 303 this year, there are more general heat equations, such as $u_t = (k(x)u_x)_x$ for a substance whose heat conductivity/capacity at x is reflected by k(x); the case k(x) = 1 for all x is the above heat equation $u_t = u_{xx}$.]

We say that a function $u: [0,1] \times (0,\infty)$ is the solution to the *Dirichlet problem* for the heat equation we mean that $[0,1] \times [0,\infty)$ we mean

- (1) $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in (0,1) \times (0,\infty)$ (i.e., all (x,t) with 0 < x < 1 and all t > 0) (this is the heat equation); and
- (2) u(0,t) = u(1,t) for all t > 0 (in the literature outside of CPSC 303, this is sometimes called zero-valued Dirichlet condition; one can give more general *Dirichlet data* that specifies u(0,t) and u(1,t) which are two fixed, real constants, or even two functions of t.

Often we write u(x,0) = f(x) for a function f(x) that is given and is called the "initial condition" (i.e., the time t = 0 temperature profile of the rod). Sometimes we want u to be a continuous function on all of $[0,1] \times [0,\infty)$; if f(x) above is continuous, this turns out to be equivalent to requiring that u be continuous at the two points (0,0) and (1,0).

We now recall our conventions regarding the discrete heat equation in Homework 8.

Let $n \in \mathbb{N} = \{1, 2, ...\}$ and let $\mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$ be the non-negative integers. We say that a function $U: \{0, 1, ..., n, n+1\} \times \mathbb{Z}_{\geq 0} \to \mathbb{R}$ satisfies the *discrete heat* equation if for all $i \in [n]$ and $j \in \mathbb{Z}_{\geq 0}$ we have

(6)
$$U(i, j+1) = U(i, j) + \theta D_i^{2, \text{centre}} U(i, j),$$

where

$$D_i^{2,\text{centre}} U(i,j) = U(i+1,j) + U(i-1,j) - 2U(i,j).$$

If $f: [n] \to \mathbb{R}$ is any function, we say that U satisfies the *initial condition* f, if

$$U(i,0) = f(i) \quad \text{for } i \in [n].$$

We say that U satisfies the zero Dirichlet condition, or simply the Dirichlet condition, if (6) holds for i = 1 and i = n (and all $j \ge 0$) provided that we have

$$U(0,j) = U(n+1,j) = 0$$
 for all $j = 1, 2, ...$

The solution to the Dirichlet problem for the discrete heat equation can be written more simply as follows. If we use the notation

$$U(\cdot, j) = \begin{bmatrix} U(1, j) \\ U(2, j) \\ \vdots \\ U(n, j) \end{bmatrix}$$

which we call the "temperature profile at time j," then one may write the solution to the Dirichlet problem for the discrete heat equation with initial value f as

(7)
$$U(\cdot,j) = \left(I + \theta \left(N_{\mathrm{row},n} - 2I\right)\right)^{J} \mathbf{f},$$

where

$$\mathbf{f} = \begin{bmatrix} f(1) \\ f(2) \\ \vdots \\ f(n) \end{bmatrix}$$

is the initial value of U, i.e., $U(\cdot, 0) = \mathbf{f}$. Equivalently, since $N_{\text{row},n} = S_{n,1} + S_{n,-1}$, we can write

$$U(\cdot, j) = \left(I + \theta \left(S_{n,1} + S_{n,-1} - 2I\right)\right)^{J} \mathbf{f},$$

- (1) True/False
 - (a) The minimizer of

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^2 dx$$

- over $\mathcal{U}_{f:t}$ is unique. Solution: True
- (b) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^{2} dx$$

over $\mathcal{U}_{f;\mathbf{t}}$ satisfies $v''(t_0) = v''(t_n) = 0$. Solution: True

(c) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^{2} dx$$

over $\mathcal{U}_{f;\mathbf{t}}$ corresponds to the "free boundary" condition. Solution: True

(d) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^2 dx$$

over $\mathcal{U}_{f;t}$ corresponds to the "clamped boundary" condition of f. Solution: False

(e) If $h_0 = \cdots = h_n$, then the equations for the $\mathbf{c} = (c_1, \ldots, c_{n-1})$ under the free boundary condition correspond to

$$((1/2)N_{\text{rod},n-1}+2I)\mathbf{c}=3\mathbf{F}$$

where **F** is the vector whose *i*th component is $f[x_{i-1}, x_i, x_{i+1}]$. Solution: True

- (f) For $n \ge 1$, the inverse of $S_{n,1}$ is $S_{n,-1}$. Solution: False: the bottom row of $S_{n,1}$ consists entirely of 0's and hence $S_{n,1}$ is not invertible.
- (g) For $n \ge 1$, the inverse of $C_{n,1}$ is $C_{n,-1}$. Solution: True: For any $\mathbf{y} \in \mathbb{R}^n$, $C_{n,1}\mathbf{y}$ is just \mathbf{y} with its components "cyclically rotated;" $C_{n,-1}$ is just the inverse rotation.
- (h) The function $u(x,t) = e^x \sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$). Solution: False. $u_t = 0$ and u_{xx} is a nonzero function.

The following corrections were made at 3:18pm on April 15.

- (i) The function $u(x,t) = e^t \sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$). Solution: False.
- (j) The function $u(x,t) = e^{-t} \sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$). Solution: True.
- (k) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{-\omega^2 t} \sin(\omega x)$ satisfies the heat equation throughout \mathbb{R}^2 . Solution: True.

6

- (1) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{\omega^2 t} \sin(\omega x)$ satisfies the heat equation throughout \mathbb{R}^2 . Solution: False.
- (m) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{\omega^2 t} \sin(\omega x)$ satisfies the equation $-u_t = u_{xx}$ throughout \mathbb{R}^2 . Solution: True.
- (n) One solution to the Dirichlet problem for the heat equation $[0,1] \times (0,\infty)$ is the function $u(x,t) = \sin(x)e^{-t}$. Solution: False. This function does not satisfy u(1,t) = 0 for all t.

- (2) Circle the correct numeral (i, ii, iii, or iv) in each of the following questions.
 - (a) Interpolating a function, f = f(x), at a large number of values x_0, \ldots, x_n data points is disadvantageous because:
 - (i) the error in interpolation formula may not be small if the (n+1)-st derivative of f is very large (or doesn't exist);
 - (ii) adding a single data point can drastically change the entire interpolant;
 - (iii) the values of the interpolant at any point can greatly depend on far away values of f;
 - (iv) all of the above.

Solution: iv (For example, see p.332 of [A&G]).

- (b) For $n \ge 2$, $||S_{n,1}||_{\infty}$
 - (i) equals 1 for all $n \ge 2$;
 - (ii) is at most 1 but not always equal to 1;
 - (iii) equals 2;
 - (iv) does not exist.
 - Solution: i
- (c) All $n \in \mathbb{N}$, $S_{n,1}(y_1, \ldots, y_n)$ equals
 - (i) $(y_2, y_3, \ldots, y_n, 0);$
 - (ii) $(y_2, y_3, \ldots, y_n, y_1);$
 - (iii) $(0, y_1, \ldots, y_{n-2}, y_{n-1});$
 - (iv) $(y_n, y_1, \dots, y_{n-2}, y_{n-1}).$
 - Solution: i
- (d) Fix $n \in \mathbb{N}$. The set of k for which $S_{n,1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \ge 2;$
 - (iii) $k \ge n;$
 - (iv) $k \ge n + 1$.
 - Solution: (iii)
- (e) Fix $n \in \mathbb{N}$. The set of k for which $S_{n,-1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \ge 2;$
 - (iii) $k \ge n$;
 - (iv) $k \ge n+1$.
 - Solution: (iii)
- (f) Fix $n \in \mathbb{N}$. The set of k for which $C_{n,1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \ge 2;$
 - (iii) $k \ge n$;
 - (iv) $k \ge n + 1$.
 - Solution: (i), since $C_{n,1}$ is invertible.
- (g) Fix $n \in \mathbb{N}$. The set of k for which $C_{n,-1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \ge 2;$
 - (iii) $k \ge n$;
 - (iv) $k \ge n+1$.
 - Solution: (i), since $C_{n,-1}$ is invertible.

- (h) Consider the discrete heat equation with n = 1 houses, $\theta = -1/3$ and f(1) = 4. As $j \to \infty$, U(1, j),
 - (i) is always positive and tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.

Solution: (i), indeed for n = 1 we have I = [1] (the 1×1 matrix) and $N_{\text{row},1} = [0]$ (since $S_{n,1} = [0] = S_{n,-1}$), and so

$$I + \theta (N_{\text{row},n} - 2I) = [1] + (-1/3)([0] - 2[1]) = [5/3],$$

and so (7) implies that $U(1, j) = [5/3]^j \mathbf{f} = (5/3)^j f(1) = (5/3)^j 4$.

(i) Consider the discrete heat equation with n = 1 houses, $\theta = 1/3$ and f(1) = 4. As $j \to \infty$, U(1, j),

- (i) is always positive and tends to infinity;
- (ii) alternates in sign between positive and negative and its absolute value tends to infinity;
- (iii) is always positive and tends to zero;
- (iv) alternates in sign between positive and negative and its absolute value tends to zero.

Solution: (iii), indeed for n = 1 we have I = [1] (the 1×1 matrix) and $N_{\text{row},1} = [0]$ (since $S_{n,1} = [0] = S_{n,-1}$), and so

 $I + \theta (N_{\text{row},n} - 2I) = [1] + (1/3)([0] - 2[1]) = [1/3],$

and so (7) implies that $U(1,j) = [1/3]^j \mathbf{f} = (1/3)^j f(1) = (1/3)^j 4$.

- (j) Consider the discrete heat equation with n = 1 houses, $\theta = 1$ and f(1) = 4. As $j \to \infty$, U(1, j),
 - (i) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value always equals 4;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.

Solution: (ii), indeed for n = 1 we have I = [1] (the 1×1 matrix) and $N_{\text{row},1} = [0]$ (since $S_{n,1} = [0] = S_{n,-1}$), and so

 $I + \theta (N_{\text{row},n} - 2I) = [1] + 1([0] - 2[1]) = [-1],$

and so (7) implies that $U(1,j) = [-1]^j \mathbf{f} = (-1)^j f(1) = (-1)^j 4$.

- (k) Consider the discrete heat equation with n = 1 houses, $\theta = 2$ and f(1) = 4. As $j \to \infty$, U(1, j),
 - (i) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value always equals 4;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.

8

Solution: (i), indeed for n = 1 we have I = [1] (the 1×1 matrix) and $N_{\text{row},1} = [0]$ (since $S_{n,1} = [0] = S_{n,-1}$), and so

 $I + \theta (N_{\text{row},n} - 2I) = [1] + 2([0] - 2[1]) = [-3],$

and so (7) implies that $U(1,j) = [-3]^j \mathbf{f} = (-3)^j f(1) = (-3)^j 4$, which alternates in sign and $|U(1,j)| \to \infty$ as $j \to \infty$.

- (l) Consider the discrete heat equation with n = 2 houses, $\theta = 1/4$ and any $\mathbf{f} = (5, 6)$. As $j \to \infty$, U(1, j) and U(2, j)
 - (i) both alternate in sign between positive and negative, and each of their absolute values tends to infinity;
 - (ii) both alternate in sign between positive and negative and both of their absolute values tend to zero;
 - (iii) both are always positive and tends to zero;
 - (iv) both are always positive and tend to infinity.

Solution: (iii), indeed for n = 2, and hence

$$I + \theta (N_{\text{row},n} - 2I) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (1/4) \begin{bmatrix} -2 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix}.$$

Hence (7) implies that

$$U(\cdot, j) = \begin{bmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix}^{j} \mathbf{f}.$$

Since

$$\left\| \begin{bmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \right\|_{\infty} = 3/4,$$

we have that

$$\left\| \begin{bmatrix} 1/2 & 1/4\\ 1/4 & 1/2 \end{bmatrix}^j \right\|_{\infty} \le (3/4)^j$$

which tends to 0 as $j \to \infty$. Hence

$$\left\| \begin{bmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix}^j \mathbf{f} \right\|_{\infty} \le \left\| \begin{bmatrix} 1/2 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \right\|_{\infty}^j \|\mathbf{f}\|_{\infty} = (3/4)^j 6$$

tends to 0 as $j \to \infty$, and hence so does each component of $U(\cdot, j)$.

- (3) Write short answers. For example, if the answer is 1.5 or 3/2, either form is acceptable. We will do our best to accept some forms that are not fully reduced: for example, if a formula produces 6/4, then that's OK, too; it is not OK to unecessarily introduce a factor of 13524 in the numerator and denominator and write the answer as 81144/54096.
 - (a) For n = 2, what is $||N_{rod,n}||_{\infty}$? Solution: 1. Indeed,

$$N_{\mathrm{rod},2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

whose sum of absolute values in each row equals 1.

(b) For n = 3, what is $||N_{rod,n}||_{\infty}$? Solution: 2. Indeed,

$$N_{
m rod,3} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

whose middle row has sum of absolute values equal to 2 (and is equal to 1 for the top row and for the bottom row).

(c) Consider the discrete heat equation with n = 2 houses (Homework 8, Section 4), and θ = 1/3. If initially House 1 is at 5°C and House 2 at 1°C, what is the temperature of House 1 at time j = 1 and j = 2? Solution: 2°C at j = 1 and 4/3°C at j = 2. According to Exercise 5.2 of Homework 8, we have

TempProfile
$$(j) = \begin{pmatrix} \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}^{j}$$
TempProfile $(j-1)$

for j = 1, 2. Since

$$\text{TempProfile}(0) = \begin{bmatrix} 5\\1 \end{bmatrix}$$

we have

TempProfile(1) =
$$\frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 6 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
,

Similarly

TempProfile(2) =
$$\frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4/3 \\ 4/3 \end{bmatrix}$$

(d) Let A be an $n \times n$ matrix with $||A||_{\infty} \leq 1/2$, and let

$$U = U(A) = (I - A)^{-1} - (I - A + A^{2} - A^{3}).$$

Give the best possible upper bound on $||U||_{\infty}$, i.e., find an $M \in \mathbb{R}$ such that $||U||_{\infty} \leq M$ for all A (with $||A||_{\infty} \leq 1/2$), and give an A such that $||U||_{\infty} = M$. Solution: M = 1/8, and A = [-1] (the 1×1 matrix); there are other choices for A, such as A = -I where I is the $n \times n$ identity matrix.

10

Justification: we have

 $U = A^4 - A^5 + A^6 - \cdots,$

and hence

$$\|U\|_{\infty} = \|A^4 - A^5 + A^6 - \dots\|_{\infty} \le \|A\|_{\infty}^4 + \|A\|_{\infty}^5 + \dots = (1/2)^4 + (1/2)^5 + \dots = 1/8.$$

Furthermore, if A is the 1 × 1 matrix $A = [-1/2]$, then
 $U = [-1/2]^4 - [-1/2]^5 + [-1/2]^6 - \dots = [(1/2)^4 + (1/2)^5 + \dots] = [1/8].$

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca *URL*: http://www.cs.ubc.ca/~jf