CPSC 303: FINAL PRACTICE QUESTIONS, SET 1, BRIEF
SOLTIONS

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised
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All questions on Homework 1-8 should be considered final exam prac-
tice.

RECALL THE FOLLOWING NOTATION AND DEFINITIONS RE-
GARDING SPLINES AND Homework 7 and 8:
For fixed real numbers
A:.’E()<£C1<...<(En:B,

and fixed yo,...,yn € R, we set

(1) U=Uy def {u € C*[A, B] ’ u(x;) = y; for all z}

Also if f: [A, B] — R is any function, we have set
2) U=Up {u € C?[A, B ] u(a;) = fla;) for all Z}

and if f’ exists at the endpoints xq, z,,, then we considered the “clamped boundary”
subspace of Uy,; defined as

{u € Up ’ u'(z9) = f'(z0) and v/ (z,,) = f’(wn)}

For a cubic spline, v(z), with endpoint z¢ and z, and breakpoints z; < --- <
T,—1 We set
ho=x1 -, ... ;hp1 =2y —2p_1,
and use the notation
(3)  si(®) = a; +bi(x — x;) + cilw — x)? + di(x — ;)% for vy <@ < wipy

for the cubic pieces of v(s).
The fundamental to compute cubic splines with either the free or clamped con-
ditions involves the equations:
-Ciy1 = 3f[wim1, iy T, i=1,...,m—1

hi—1 hi
) hi71+hic 1t c+hi71+hz
where ¢y = ¢,, = 0 for the free boundary conditions, and
2¢0 + c1 = 3f[xo,x0,71] and cp—1 + 2¢, = 3f[Tn-1,Tn-1,Tn]
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under clamped boundary conditions.
In particular, if we consider the spline with all h; equal, then our algorithm for
the free boundary spline reduces to the equation

(5) ((1/2)Nroan—1 + 2I)c = 3@,

where ¢ = (¢1,...,¢n—1), and where ® is the (n — 1)-dimensional vector whose i-th
component equals f[z;_1,x;, z;y1] (and ¢o = ¢, = 0). Hence we have

¢ = (3/2)(I + (1/4)Nroa) ' ®.

Recall that o refers to the operator on sequences {y;}icz given by

(0y)i = Yi+1,
and that we defined the difference operator D = o — 1.

Recall that Homeworks 7 and 8 involved a number of matrices, including:

(0 1 0 0 0 0 0 O] 0 0 00 --- 0 00
0 01 0 0 0 0 O 10 00 --- 0 0O
0 0 0 1 0 0 0 O 01 0 O 0 0 O
0 0 0 O 0 0 0 O 00 1 0 0 0 O
Spa= [t o oon ot Sy = Do Do
0 0 0 O 01 0 O 00 0 O 0 0 O
0 0 0 O 0 01 0 0 0 0 O 1 0 0
0 0 0 O 0 0 0 1 00 0 O 01 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
and
(0 1. 0 0 -- 0 0 0 O]
1 010 00 0 O
0 1 0 1 00 0 O
0 01 0 0 0 0 O
Nrod,n - Sn,l + Sn,fl = )
00 0 O 01 0 0
00 0 O 1 01 0
0 0 0 O 01 0 1
0 0 0 0 - 0 0 1 0f
and their variants
[0 1 0 0 0 0 0 O] [0 0 0 0 0 0 O
0 01 0 00 0 O 1 0 0 O 0 0 0
0 0 0 1 00 0 O 01 0 O 0 0 O
00 0 O 00 0 O 0 01 0 0 0 O
e Cr i Cam= AR
00 0 O 01 0 O 0 0 0 O 0 0 0
00 0 O 00 1 0 0 0 0O 1 0 0
00 0 O 0 0 0 1 0 0 0O 0 1 0
1 0 0 0 0 0 0 0f 0 0 0 0 0 0 1

o O o o

oo o
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and
Nring,n = Cn,l + Cn,fl'

One can equivalently describe the above matrices as operators: i.e., these matri-
ces are the unique matrices such that for all (yq,...,y,) € R™:
Sna(yts--sYn) = (Y2,- - ¥n, 0)
Sn—1W1, - yn) = (0,y1,- .-, Yn—1)
Cra(yrs-- - yn) = (Y2, Yns 41)
Cn,—l(ylv cee 7yn) = (ymylv S 7yn—1)

For ke N={1,2,....},
Sn,k: - (Sn,l)ka Sn,—k: = (Sn,—l)ka Cn k= (Cn,l)ka Cn,—k - (Cn,—l)k-

)

We now recall our conventions regarding the heat equation in Homework 8; you
should be aware that outside CPSC 303 this term, the literature often
has different notation and conventions.

Recall that by the heat equation we mean the heat equation u; = wug,, i.e.,
ug(z,t) = Ugy(z,t) where (x,t) is a point in R% [In the literature outside of
CPSC 303 this year, there are more general heat equations, such as u; = (k(x)uz)s
for a substance whose heat conductivity/capacity at x is reflected by k(x); the case
k(xz) =1 for all z is the above heat equation u; = uzy.|

We say that a function u: [0,1] x (0, 00) is the solution to the Dirichlet problem
for the heat equation we mean that [0, 1] x [0, 00) we mean

(1) we(z,t) = ugg(z,t) for all (z,t) € (0,1) x (0,00) (i.e., all (z,t) with 0 <
2 < 1 and all £ > 0) (this is the heat equation); and

(2) u(0,t) = u(1,t) for all £ > 0 (in the literature outside of CPSC 303, this is
sometimes called zero-valued Dirichlet condition; one can give more general
Dirichlet data that specifies u(0,t) and u(1,¢) which are two fixed, real
constants, or even two functions of ¢.

Often we write u(z,0) = f(z) for a function f(z) that is given and is called the
“initial condition” (i.e., the time ¢ = 0 temperature profile of the rod). Sometimes
we want u to be a continuous function on all of [0,1] x [0,00); if f(x) above is
continuous, this turns out to be equivalent to requiring that v be continuous at the
two points (0,0) and (1,0).

We now recall our conventions regarding the discrete heat equation in Home-
work 8.

Let n € N={1,2,...} and let Z>o = {0,1,2,...} be the non-negative integers.
We say that a function U: {0,1,...,n,n+ 1} X Z>o — R satisfies the discrete heat
equation if for all i € [n] and j € Z>(¢ we have

(6) U(i,j +1) = Ui, j) + 6 D" U (i, 5),

where
Df,centreU(i7j) =U@G+1,5)+U(@i—1,5) —2U(4,7).
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If f: [n] — R is any function, we say that U satisfies the initial condition f, if
U(i,0) = f(i) fori€ [n].
We say that U satisfies the zero Dirichlet condition, or simply the Dirichlet condi-
tion, if (6) holds for ¢ = 1 and ¢ = n (and all j > 0) provided that we have
U@, ) =Un+1,5)=0 forallj=1,2,....
The solution to the Dirichlet problem for the discrete heat equation can be
written more simply as follows. If we use the notation
U(l,j)
, U(2,j)
U(a.] = :
U(n,j)
which we call the “temperature profile at time j,” then one may write the solution
to the Dirichlet problem for the discrete heat equation with initial value f as

(7) U(,j) = (I + G(Nrow,n - 2I)>Jf7
where
f(1)
2
. f(: )
7o)

is the intial value of U, i.e., U(-,0) = f. Equivalently, since Nyow n = Sn,1 + Sn,—1,
we can write

U(-j) = (I+ 0(Sn,1 + Sn,—1 — 2I)>]f,
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(1) True/False

(a)

~—~
—
N

(n)

The minimizer of

E(u) = / (u"(2))* da

over Uy, is unique.
The minimizer, v, of the energy

E(u) = /B (u"(aﬂ))2 dx

A
over Uy, satisfies v”(tg) = v (¢,) = 0.
The minimizer, v, of the energy

B
5(u)=/A (u"(:c))de

over Uy, corresponds to the “free boundary” condition.
The minimizer, v, of the energy

B
S(u):/ (u"(ax))Zda:

A
over Uy, corresponds to the “clamped boundary” condition of f.
If hg = -+ = hy, then the equations for the ¢ = (¢1,...,¢,—1) under
the free boundary condition correspond to

((1/2)Nroan—1 + 2I)c = 3F,

where F is the vector whose ith component is f[x;_1, z;, Xiy1].

For n > 1, the inverse of S, 1 is Sp,—1.

For n > 1, the inverse of Cy, ; is Cj,,—1.

The function u(z,t) = e®sin(x) satisfies the heat equation u; = g,
throughout R? (i.e., uy(w,t) = uz,(z,t) for all (z,t) € R?).

The following corrections were made at 3:18pm on April 15.

The function u(z,t) = e'sin(z) satisfies the heat equation u; = g,
throughout R? (i.e. uf(:r t) = Uyy (2, t) for all (z,t) € R?).

The function u(z, ) !sin(z) satisfies the heat equation u; = 1,
throughout R? (i.e. ut(x t) = Upy (2, 1) for all (z,t) € R?).

For any w € R, the function u(z,t) = e~ *t
equation throughout R?.

sin(wx) satisfies the heat

w2t

For any w € R, the function u(z,t) = ¢
equation throughout R?.

sin(wx) satisfies the heat
For any w € R, the function u(z, t) = ¥’ sin(wz) satisfies the equation
—Uy = Uggthroughout R2.

One solution to the Dirichlet problem for the heat equation [0, 1] x
(0,00) is the function u(z,t) = sin(z)e "
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(2) Circle the correct numeral (i, ii, iii, or iv) in each of the following

questions.
(a) Interpolating a fuction, f = f(z), at a large number of values
xg, ..., %, data points is disadvantageous because:

(i) the error in interpolation formula may not be small if the (n+1)-
st derivative of f is very large (or doesn’t exist);
(ii) adding a single data point can drastically change the entire in-
terpolant;
(iii) the values of the interpolant at any point can greatly depend on
far away values of f;
(iv) all of the above.
(b) For n > 2, [|Sn1]lco
(i) equals 1 for all n > 2;
(ii) is at most 1 but not always equal to 1;
(iii) equals 2;
(iv) does not exist.
(¢c) AlneN, Sp1(y1,---,yn) equals
(1) (y2,35-->Yn,0);
(1) (Y2,¥35- -+ Yns¥1);
(i) (0,y15- s Yn—2,Yn—1);
(V) Wn Y1, Yn—2,Yn—1)-
(d) Fix n € N. The set of k for which SF, =0 is
(i) O (the empty set);
(i) k> 2;
(iil) k& > n;
(iv) E>n+1.
(e) Fix n € N. The set of k for which S& _, =0 is
(i) @ (the empty set);
(i) k> 2;
(iii) k > n;
(iv) k>n+1.
(f) Fix n € N. The set of k for which C ; =0 is
(i) 0 (the empty set);
(i) k> 2;
(iii) k > n;
(iv) k>n+1.
(g) Fix n € N. The set of k for which C% _; =0 is
(i) @ (the empty set);
(i) k> 2;
(iii) &k > n;
(iv) k>n+1.
(h) Consider the discrete heat equation with n = 1 houses, § = —1/3 and
(i) is always positive and tends to infinity;
(ii) alternates in sign between positive and negative and its absolute
value tends to infinity;
(iii) is always positive and tends to zero;
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(iv)

alternates in sign between positive and negative and its absolute
value tends to zero.

(i) Consider the discrete heat equation with n = 1 houses, § = 1/3 and
f(1)=4. As j — o0, U(1,7),

()

is always positive and tends to infinity;

) alternates in sign between positive and negative and its absolute

value tends to infinity;

is always positive and tends to zero;

alternates in sign between positive and negative and its absolute
value tends to zero.

(j) Consider the discrete heat equation with n = 1 houses, § = 1 and
f(1) =4 As j — o0, U(1,j),

(i)

alternates in sign between positive and negative and its absolute
value tends to infinity;

alternates in sign between positive and negative and its absolute
value always equals 4;

is always positive and tends to zero;

alternates in sign between positive and negative and its absolute
value tends to zero.

(k) Consider the discrete heat equation with n = 1 houses, § = 2 and
f(1) =4. As j = 00, U(1, ),

alternates in sign between positive and negative and its absolute
value tends to infinity;

alternates in sign between positive and negative and its absolute
value always equals 4;

is always positive and tends to zero;

alternates in sign between positive and negative and its absolute
value tends to zero.

(1) Consider the discrete heat equation with n = 2 houses, § = 1/4 and
any f = (5,6). As j — oo, U(L,7) and U(2, )

(i)

both alternate in sign between positive and negative, and each
of their absolute values tends to infinity;

both alternate in sign between positive and negative and both
of their absolute values tend to zero;

both are always positive and tends to zero;

both are always positive and tend to infinity.
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(3) Write short answers. For example, if the answer is 1.5 or 3/2, either form
is acceptable. We will do our best to accept some forms that are not fully
reduced: for example, if a formula produces 6/4, then that’s OK, too; it is
not OK to unecessarily introduce a factor of 13524 in the numerator and
denominator and write the answer as 81144/54096.

(a) For n =2, what is || Nvod,n|lec ?
(b) For n = 3, what is || Nyod,nlleo ?

(¢) Consider the discrete heat equation with n = 2 houses (Homework 8,
Section 4), and 6 = 1/3. If initially House 1 is at 5°C and House 2 at
1°C, what is the temperature of House 1 at time j = 1 and j = 27

(d) Let A be an n x n matrix with ||A]|s < 1/2, and let
U=U(A) =T A" —(I-A+ A% A3,

Give the best possible upper bound on ||U||«, i.e., find an M € R such
that [|[U]loe < M for all A (with ||Al|oe < 1/2), and give an A such
that |Uljec = M.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf



