CPSC 303: FINAL PRACTICE QUESTIONS, SET 1, BRIEF SOLTIONS

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

All questions on Homework 1-8 should be considered final exam practice.

RECALL THE FOLLOWING NOTATION AND DEFINITIONS REGARDING SPLINES AND Homework 7 and 8:

For fixed real numbers

$$A = x_0 < x_1 < \ldots < x_n = B$$

and fixed $y_0, \ldots, y_n \in \mathbb{R}$, we set

(1)
$$\mathcal{U} = \mathcal{U}_{\mathbf{t}, \mathbf{y}} \stackrel{\text{def}}{=} \left\{ u \in C^2[A, B] \mid u(x_i) = y_i \text{ for all } i \right\}.$$

Also if $f \colon [A,B] \to \mathbb{R}$ is any function, we have set

(2)
$$\mathcal{U} = \mathcal{U}_{f;\mathbf{t}} \stackrel{\text{def}}{=} \Big\{ u \in C^2[A, B] \ \Big| \ u(x_i) = f(x_i) \text{ for all } i \Big\},$$

and if f' exists at the endpoints x_0, x_n , then we considered the "clamped boundary" subspace of $\mathcal{U}_{f:\mathbf{t}}$ defined as

$$\left\{ u \in \mathcal{U}_{f;\mathbf{t}} \mid u'(x_0) = f'(x_0) \text{ and } u'(x_n) = f'(x_n) \right\}.$$

For a cubic spline, v(x), with endpoint x_0 and x_n and breakpoints $x_1 < \cdots < x_{n-1}$ we set

$$h_0 = x_1 - x_0, \ldots, h_{n-1} = x_n - x_{n-1},$$

and use the notation

(3)
$$s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 for $x_i \le x \le x_{i+1}$ for the cubic pieces of $v(s)$.

The fundamental to compute cubic splines with either the free or clamped conditions involves the equations:

(4)
$$\frac{h_{i-1}}{h_{i-1} + h_i} c_{i-1} + 2c_i + \frac{h_i}{h_{i-1} + h_i} c_{i+1} = 3f[x_{i-1}, x_i, x_{i+1}], \quad i = 1, \dots, n-1$$

where $c_0 = c_n = 0$ for the free boundary conditions, and

$$2c_0 + c_1 = 3f[x_0, x_0, x_1]$$
 and $c_{n-1} + 2c_n = 3f[x_{n-1}, x_{n-1}, x_n]$

Research supported in part by an NSERC grant.

under clamped boundary conditions.

In particular, if we consider the spline with all h_i equal, then our algorithm for the free boundary spline reduces to the equation

(5)
$$((1/2)N_{\text{rod},n-1} + 2I)\mathbf{c} = 3\mathbf{\Phi},$$

where $\mathbf{c} = (c_1, \dots, c_{n-1})$, and where Φ is the (n-1)-dimensional vector whose *i*-th component equals $f[x_{i-1}, x_i, x_{i+1}]$ (and $c_0 = c_n = 0$). Hence we have

$$\mathbf{c} = (3/2)(I + (1/4)N_{\text{rod}})^{-1}\mathbf{\Phi}.$$

Recall that σ refers to the operator on sequences $\{y_i\}_{i\in\mathbb{Z}}$ given by

$$(\sigma y)_i = y_{i+1},$$

and that we defined the difference operator $D = \sigma - 1$.

Recall that Homeworks 7 and 8 involved a number of matrices, including:

$$S_{n,1} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \end{bmatrix}, \quad S_{n,-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix},$$

and

$$N_{\text{rod},n} = S_{n,1} + S_{n,-1} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix};$$

and their variants

$$C_{n,1} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \end{bmatrix}.$$

and

$$N_{\text{ring},n} = C_{n,1} + C_{n,-1}.$$

One can equivalently describe the above matrices as operators: i.e., these matrices are the unique matrices such that for all $(y_1, \ldots, y_n) \in \mathbb{R}^n$:

$$S_{n,1}(y_1, \dots, y_n) = (y_2, \dots, y_n, 0)$$

$$S_{n,-1}(y_1, \dots, y_n) = (0, y_1, \dots, y_{n-1})$$

$$C_{n,1}(y_1, \dots, y_n) = (y_2, \dots, y_n, y_1)$$

$$C_{n,-1}(y_1, \dots, y_n) = (y_n, y_1, \dots, y_{n-1})$$

For $k \in \mathbb{N} = \{1, 2, \dots, \}$,

$$S_{n,k} = (S_{n,1})^k$$
, $S_{n,-k} = (S_{n,-1})^k$, $C_{n,k} = (C_{n,1})^k$, $C_{n,-k} = (C_{n,-1})^k$.

We now recall our conventions regarding the heat equation in Homework 8; you should be aware that outside CPSC 303 this term, the literature often has different notation and conventions.

Recall that by the *heat equation* we mean the heat equation $u_t = u_{xx}$, i.e., $u_t(x,t) = u_{xx}(x,t)$ where (x,t) is a point in \mathbb{R}^2 . [In the literature outside of CPSC 303 this year, there are more general heat equations, such as $u_t = (k(x)u_x)_x$ for a substance whose heat conductivity/capacity at x is reflected by k(x); the case k(x) = 1 for all x is the above heat equation $u_t = u_{xx}$.]

We say that a function $u: [0,1] \times (0,\infty)$ is the solution to the *Dirichlet problem* for the heat equation we mean that $[0,1] \times [0,\infty)$ we mean

- (1) $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in (0,1) \times (0,\infty)$ (i.e., all (x,t) with 0 < x < 1 and all t > 0) (this is the heat equation); and
- (2) u(0,t) = u(1,t) for all t > 0 (in the literature outside of CPSC 303, this is sometimes called zero-valued Dirichlet condition; one can give more general Dirichlet data that specifies u(0,t) and u(1,t) which are two fixed, real constants, or even two functions of t.

Often we write u(x,0) = f(x) for a function f(x) that is given and is called the "initial condition" (i.e., the time t = 0 temperature profile of the rod). Sometimes we want u to be a continuous function on all of $[0,1] \times [0,\infty)$; if f(x) above is continuous, this turns out to be equivalent to requiring that u be continuous at the two points (0,0) and (1,0).

We now recall our conventions regarding the discrete heat equation in Homework 8.

Let $n \in \mathbb{N} = \{1, 2, ...\}$ and let $\mathbb{Z}_{\geq 0} = \{0, 1, 2, ...\}$ be the non-negative integers. We say that a function $U \colon \{0, 1, ..., n, n+1\} \times \mathbb{Z}_{\geq 0} \to \mathbb{R}$ satisfies the discrete heat equation if for all $i \in [n]$ and $j \in \mathbb{Z}_{\geq 0}$ we have

(6)
$$U(i, j+1) = U(i, j) + \theta D_i^{2, \text{centre}} U(i, j),$$

where

$$D_i^{2,\text{centre}}U(i,j) = U(i+1,j) + U(i-1,j) - 2U(i,j).$$

If $f:[n]\to\mathbb{R}$ is any function, we say that U satisfies the initial condition f, if

$$U(i,0) = f(i)$$
 for $i \in [n]$.

We say that U satisfies the zero Dirichlet condition, or simply the Dirichlet condition, if (6) holds for i = 1 and i = n (and all $j \ge 0$) provided that we have

$$U(0,j) = U(n+1,j) = 0$$
 for all $j = 1, 2, ...$

The solution to the Dirichlet problem for the discrete heat equation can be written more simply as follows. If we use the notation

$$U(\cdot,j) = \begin{bmatrix} U(1,j) \\ U(2,j) \\ \vdots \\ U(n,j) \end{bmatrix}$$

which we call the "temperature profile at time j," then one may write the solution to the Dirichlet problem for the discrete heat equation with initial value f as

(7)
$$U(\cdot,j) = \left(I + \theta(N_{\text{row},n} - 2I)\right)^{j} \mathbf{f},$$

where

$$\mathbf{f} = \begin{bmatrix} f(1) \\ f(2) \\ \vdots \\ f(n) \end{bmatrix}$$

is the intial value of U, i.e., $U(\cdot,0) = \mathbf{f}$. Equivalently, since $N_{\text{row},n} = S_{n,1} + S_{n,-1}$, we can write

$$U(\cdot,j) = \left(I + \theta \left(S_{n,1} + S_{n,-1} - 2I\right)\right)^{j} \mathbf{f},$$

- (1) True/False
 - (a) The minimizer of

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^{2} dx$$

over $\mathcal{U}_{f:\mathbf{t}}$ is unique.

(b) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} \left(u''(x) \right)^{2} dx$$

over $\mathcal{U}_{f;\mathbf{t}}$ satisfies $v''(t_0) = v''(t_n) = 0$.

(c) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} (u''(x))^{2} dx$$

over $\mathcal{U}_{f;\mathbf{t}}$ corresponds to the "free boundary" condition.

(d) The minimizer, v, of the energy

$$\mathcal{E}(u) = \int_{A}^{B} (u''(x))^{2} dx$$

over $\mathcal{U}_{f;\mathbf{t}}$ corresponds to the "clamped boundary" condition of f.

(e) If $h_0 = \cdots = h_n$, then the equations for the $\mathbf{c} = (c_1, \dots, c_{n-1})$ under the free boundary condition correspond to

$$((1/2)N_{\operatorname{rod},n-1} + 2I)\mathbf{c} = 3\mathbf{F},$$

where **F** is the vector whose *i*th component is $f[x_{i-1}, x_i, x_{i+1}]$.

- (f) For $n \geq 1$, the inverse of $S_{n,1}$ is $S_{n,-1}$.
- (g) For $n \geq 1$, the inverse of $C_{n,1}$ is $C_{n,-1}$.
- (h) The function $u(x,t) = e^x \sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$).

The following corrections were made at 3:18pm on April 15.

- (i) The function $u(x,t) = e^t \sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$).
- (j) The function $u(x,t) = e^{-t}\sin(x)$ satisfies the heat equation $u_t = u_{xx}$ throughout \mathbb{R}^2 (i.e., $u_t(x,t) = u_{xx}(x,t)$ for all $(x,t) \in \mathbb{R}^2$).
- (k) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{-\omega^2 t} \sin(\omega x)$ satisfies the heat equation throughout \mathbb{R}^2 .
- (1) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{\omega^2 t} \sin(\omega x)$ satisfies the heat equation throughout \mathbb{R}^2 .
- (m) For any $\omega \in \mathbb{R}$, the function $u(x,t) = e^{\omega^2 t} \sin(\omega x)$ satisfies the equation $-u_t = u_{xx}$ throughout \mathbb{R}^2 .
- (n) One solution to the Dirichlet problem for the heat equation $[0,1] \times (0,\infty)$ is the function $u(x,t) = \sin(x)e^{-t}$.

(2) Circle the correct numeral (i, ii, iii, or iv) in each of the following questions.

- (a) Interpolating a fuction, f = f(x), at a large number of values x_0, \ldots, x_n data points is disadvantageous because:
 - (i) the error in interpolation formula may not be small if the (n+1)st derivative of f is very large (or doesn't exist);
 - (ii) adding a single data point can drastically change the entire interpolant;
 - (iii) the values of the interpolant at any point can greatly depend on far away values of f;
 - (iv) all of the above.
- (b) For $n \ge 2$, $||S_{n,1}||_{\infty}$
 - (i) equals 1 for all $n \geq 2$;
 - (ii) is at most 1 but not always equal to 1;
 - (iii) equals 2;
 - (iv) does not exist.
- (c) All $n \in \mathbb{N}$, $S_{n,1}(y_1, \ldots, y_n)$ equals
 - (i) $(y_2, y_3, \ldots, y_n, 0)$;
 - (ii) $(y_2, y_3, \ldots, y_n, y_1)$;
 - (iii) $(0, y_1, \ldots, y_{n-2}, y_{n-1});$
 - (iv) $(y_n, y_1, \dots, y_{n-2}, y_{n-1}).$
- (d) Fix $n \in \mathbb{N}$. The set of k for which $S_{n,1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \geq 2$;
 - (iii) $k \ge n$;
 - (iv) $k \ge n + 1$.
- (e) Fix $n \in \mathbb{N}$. The set of k for which $S_{n,-1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \geq 2$;
 - (iii) $k \ge n$;
 - (iv) $k \ge n + 1$.
- (f) Fix $n \in \mathbb{N}$. The set of k for which $C_{n,1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \geq 2$;
 - (iii) $k \geq n$;
 - (iv) $k \ge n + 1$.
- (g) Fix $n \in \mathbb{N}$. The set of k for which $C_{n,-1}^k = 0$ is
 - (i) \emptyset (the empty set);
 - (ii) $k \geq 2$;
 - (iii) $k \ge n$;
 - (iv) $k \ge n + 1$.
- (h) Consider the discrete heat equation with n=1 houses, $\theta=-1/3$ and f(1)=4. As $j\to\infty,\,U(1,j),$
 - (i) is always positive and tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (iii) is always positive and tends to zero;

- (iv) alternates in sign between positive and negative and its absolute value tends to zero.
- (i) Consider the discrete heat equation with n=1 houses, $\theta=1/3$ and f(1)=4. As $j\to\infty$, U(1,j),
 - (i) is always positive and tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.
- (j) Consider the discrete heat equation with n=1 houses, $\theta=1$ and f(1)=4. As $j\to\infty$, U(1,j),
 - (i) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value always equals 4;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.
- (k) Consider the discrete heat equation with n=1 houses, $\theta=2$ and f(1)=4. As $j\to\infty$, U(1,j),
 - (i) alternates in sign between positive and negative and its absolute value tends to infinity;
 - (ii) alternates in sign between positive and negative and its absolute value always equals 4;
 - (iii) is always positive and tends to zero;
 - (iv) alternates in sign between positive and negative and its absolute value tends to zero.
- (l) Consider the discrete heat equation with n=2 houses, $\theta=1/4$ and any $\mathbf{f}=(5,6)$. As $j\to\infty$, U(1,j) and U(2,j)
 - (i) both alternate in sign between positive and negative, and each of their absolute values tends to infinity;
 - (ii) both alternate in sign between positive and negative and both of their absolute values tend to zero;
 - (iii) both are always positive and tends to zero;
 - (iv) both are always positive and tend to infinity.

- (3) Write short answers. For example, if the answer is 1.5 or 3/2, either form is acceptable. We will do our best to accept some forms that are not fully reduced: for example, if a formula produces 6/4, then that's OK, too; it is not OK to unecessarily introduce a factor of 13524 in the numerator and denominator and write the answer as 81144/54096.
 - (a) For n = 2, what is $||N_{\text{rod},n}||_{\infty}$?
 - (b) For n = 3, what is $||N_{\text{rod},n}||_{\infty}$?
 - (c) Consider the discrete heat equation with n=2 houses (Homework 8, Section 4), and $\theta=1/3$. If initially House 1 is at 5°C and House 2 at 1°C, what is the temperature of House 1 at time j=1 and j=2?
 - (d) Let A be an $n \times n$ matrix with $||A||_{\infty} \le 1/2$, and let

$$U = U(A) = (I - A)^{-1} - (I - A + A^2 - A^3).$$

Give the best possible upper bound on $||U||_{\infty}$, i.e., find an $M \in \mathbb{R}$ such that $||U||_{\infty} \leq M$ for all A (with $||A||_{\infty} \leq 1/2$), and give an A such that $||U||_{\infty} = M$.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca URL: http://www.cs.ubc.ca/~jf