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All questions on Homework 1–8 should be considered final exam prac-
tice.

RECALL THE FOLLOWING NOTATION AND DEFINITIONS RE-
GARDING SPLINES AND Homework 7 and 8:

For fixed real numbers

A = x0 < x1 < . . . < xn = B,

and fixed y0, . . . , yn ∈ R, we set

(1) U = Ut,y
def
=
{
u ∈ C2[A,B]

∣∣∣ u(xi) = yi for all i
}
.

Also if f : [A,B]→ R is any function, we have set

(2) U = Uf ;t
def
=
{
u ∈ C2[A,B]

∣∣∣ u(xi) = f(xi) for all i
}
,

and if f ′ exists at the endpoints x0, xn, then we considered the “clamped boundary”
subspace of Uf ;t defined as{

u ∈ Uf ;t
∣∣∣ u′(x0) = f ′(x0) and u′(xn) = f ′(xn)

}
.

For a cubic spline, v(x), with endpoint x0 and xn and breakpoints x1 < · · · <
xn−1 we set

h0 = x1 − x0, . . . , hn−1 = xn − xn−1,
and use the notation

(3) si(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3 for xi ≤ x ≤ xi+1

for the cubic pieces of v(s).
The fundamental to compute cubic splines with either the free or clamped con-

ditions involves the equations:

(4)
hi−1

hi−1 + hi
ci−1 + 2ci +

hi
hi−1 + hi

ci+1 = 3f [xi−1, xi, xi+1], i = 1, . . . , n− 1

where c0 = cn = 0 for the free boundary conditions, and

2c0 + c1 = 3f [x0, x0, x1] and cn−1 + 2cn = 3f [xn−1, xn−1, xn]
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under clamped boundary conditions.
In particular, if we consider the spline with all hi equal, then our algorithm for

the free boundary spline reduces to the equation

(5)
(
(1/2)Nrod,n−1 + 2I

)
c = 3Φ,

where c = (c1, . . . , cn−1), and where Φ is the (n− 1)-dimensional vector whose i-th
component equals f [xi−1, xi, xi+1] (and c0 = cn = 0). Hence we have

c = (3/2)(I + (1/4)Nrod)−1Φ.

———————————————————–
———————————————————–
Recall that σ refers to the operator on sequences {yi}i∈Z given by

(σy)i = yi+1,

and that we defined the difference operator D = σ − 1.
———————————————————–
Recall that Homeworks 7 and 8 involved a number of matrices, including:

Sn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 0


, Sn,−1 =



0 0 0 0 · · · 0 0 0 0
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


,

and

Nrod,n = Sn,1 + Sn,−1 =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


;

and their variants

Cn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0


, Cn,−1 =



0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


.
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and

Nring,n = Cn,1 + Cn,−1.

———————————————————–
One can equivalently describe the above matrices as operators: i.e., these matri-

ces are the unique matrices such that for all (y1, . . . , yn) ∈ Rn:

Sn,1(y1, . . . , yn) = (y2, . . . , yn, 0)

Sn,−1(y1, . . . , yn) = (0, y1, . . . , yn−1)

Cn,1(y1, . . . , yn) = (y2, . . . , yn, y1)

Cn,−1(y1, . . . , yn) = (yn, y1, . . . , yn−1)

———————————————————–
For k ∈ N = {1, 2, . . . , },

Sn,k = (Sn,1)k, Sn,−k = (Sn,−1)k, Cn,k = (Cn,1)k, Cn,−k = (Cn,−1)k.

———————————————————–
———————————————————–
We now recall our conventions regarding the heat equation in Homework 8; you

should be aware that outside CPSC 303 this term, the literature often
has different notation and conventions.

Recall that by the heat equation we mean the heat equation ut = uxx, i.e.,
ut(x, t) = uxx(x, t) where (x, t) is a point in R2. [In the literature outside of
CPSC 303 this year, there are more general heat equations, such as ut = (k(x)ux)x
for a substance whose heat conductivity/capacity at x is reflected by k(x); the case
k(x) = 1 for all x is the above heat equation ut = uxx.]

We say that a function u : [0, 1]× (0,∞) is the solution to the Dirichlet problem
for the heat equation we mean that [0, 1]× [0,∞) we mean

(1) ut(x, t) = uxx(x, t) for all (x, t) ∈ (0, 1) × (0,∞) (i.e., all (x, t) with 0 <
x < 1 and all t > 0) (this is the heat equation); and

(2) u(0, t) = u(1, t) for all t > 0 (in the literature outside of CPSC 303, this is
sometimes called zero-valued Dirichlet condition; one can give more general
Dirichlet data that specifies u(0, t) and u(1, t) which are two fixed, real
constants, or even two functions of t.

Often we write u(x, 0) = f(x) for a function f(x) that is given and is called the
“initial condition” (i.e., the time t = 0 temperature profile of the rod). Sometimes
we want u to be a continuous function on all of [0, 1] × [0,∞); if f(x) above is
continuous, this turns out to be equivalent to requiring that u be continuous at the
two points (0, 0) and (1, 0).

———————————————————–
We now recall our conventions regarding the discrete heat equation in Home-

work 8.
Let n ∈ N = {1, 2, . . .} and let Z≥0 = {0, 1, 2, . . .} be the non-negative integers.

We say that a function U : {0, 1, . . . , n, n+ 1}×Z≥0 → R satisfies the discrete heat
equation if for all i ∈ [n] and j ∈ Z≥0 we have

(6) U(i, j + 1) = U(i, j) + θD2,centre
i U(i, j),

where

D2,centre
i U(i, j) = U(i+ 1, j) + U(i− 1, j)− 2U(i, j).
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If f : [n]→ R is any function, we say that U satisfies the initial condition f , if

U(i, 0) = f(i) for i ∈ [n].

We say that U satisfies the zero Dirichlet condition, or simply the Dirichlet condi-
tion, if (6) holds for i = 1 and i = n (and all j ≥ 0) provided that we have

U(0, j) = U(n+ 1, j) = 0 for all j = 1, 2, . . ..

The solution to the Dirichlet problem for the discrete heat equation can be
written more simply as follows. If we use the notation

U(·, j) =


U(1, j)
U(2, j)

...
U(n, j)


which we call the “temperature profile at time j,” then one may write the solution
to the Dirichlet problem for the discrete heat equation with initial value f as

(7) U(·, j) =
(
I + θ

(
Nrow,n − 2I

))j
f ,

where

f =


f(1)
f(2)

...
f(n)


is the intial value of U , i.e., U(·, 0) = f . Equivalently, since Nrow,n = Sn,1 + Sn,−1,
we can write

U(·, j) =
(
I + θ

(
Sn,1 + Sn,−1 − 2I

))j
f ,
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(1) True/False
(a) The minimizer of

E(u) =

∫ B

A

(
u′′(x)

)2
dx

over Uf ;t is unique.
(b) The minimizer, v, of the energy

E(u) =

∫ B

A

(
u′′(x)

)2
dx

over Uf ;t satisfies v′′(t0) = v′′(tn) = 0.
(c) The minimizer, v, of the energy

E(u) =

∫ B

A

(
u′′(x)

)2
dx

over Uf ;t corresponds to the “free boundary” condition.
(d) The minimizer, v, of the energy

E(u) =

∫ B

A

(
u′′(x)

)2
dx

over Uf ;t corresponds to the “clamped boundary” condition of f .
(e) If h0 = · · · = hn, then the equations for the c = (c1, . . . , cn−1) under

the free boundary condition correspond to(
(1/2)Nrod,n−1 + 2I

)
c = 3F,

where F is the vector whose ith component is f [xi−1, xi, xi+1].
(f) For n ≥ 1, the inverse of Sn,1 is Sn,−1.
(g) For n ≥ 1, the inverse of Cn,1 is Cn,−1.
(h) The function u(x, t) = ex sin(x) satisfies the heat equation ut = uxx

throughout R2 (i.e., ut(x, t) = uxx(x, t) for all (x, t) ∈ R2).

The following corrections were made at 3:18pm on April 15.

(i) The function u(x, t) = et sin(x) satisfies the heat equation ut = uxx
throughout R2 (i.e., ut(x, t) = uxx(x, t) for all (x, t) ∈ R2).

(j) The function u(x, t) = e−t sin(x) satisfies the heat equation ut = uxx
throughout R2 (i.e., ut(x, t) = uxx(x, t) for all (x, t) ∈ R2).

(k) For any ω ∈ R, the function u(x, t) = e−ω
2t sin(ωx) satisfies the heat

equation throughout R2.

(l) For any ω ∈ R, the function u(x, t) = eω
2t sin(ωx) satisfies the heat

equation throughout R2.

(m) For any ω ∈ R, the function u(x, t) = eω
2t sin(ωx) satisfies the equation

−ut = uxxthroughout R2.
(n) One solution to the Dirichlet problem for the heat equation [0, 1] ×

(0,∞) is the function u(x, t) = sin(x)e−t.
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(2) Circle the correct numeral (i, ii, iii, or iv) in each of the following
questions.
(a) Interpolating a fuction, f = f(x), at a large number of values

x0, . . . , xn data points is disadvantageous because:
(i) the error in interpolation formula may not be small if the (n+1)-

st derivative of f is very large (or doesn’t exist);
(ii) adding a single data point can drastically change the entire in-

terpolant;
(iii) the values of the interpolant at any point can greatly depend on

far away values of f ;
(iv) all of the above.

(b) For n ≥ 2, ‖Sn,1‖∞
(i) equals 1 for all n ≥ 2;

(ii) is at most 1 but not always equal to 1;
(iii) equals 2;
(iv) does not exist.

(c) All n ∈ N, Sn,1(y1, . . . , yn) equals
(i) (y2, y3, . . . , yn, 0);

(ii) (y2, y3, . . . , yn, y1);
(iii) (0, y1, . . . , yn−2, yn−1);
(iv) (yn, y1, . . . , yn−2, yn−1).

(d) Fix n ∈ N. The set of k for which Sk
n,1 = 0 is

(i) ∅ (the empty set);
(ii) k ≥ 2;
(iii) k ≥ n;
(iv) k ≥ n+ 1.

(e) Fix n ∈ N. The set of k for which Sk
n,−1 = 0 is

(i) ∅ (the empty set);
(ii) k ≥ 2;
(iii) k ≥ n;
(iv) k ≥ n+ 1.

(f) Fix n ∈ N. The set of k for which Ck
n,1 = 0 is

(i) ∅ (the empty set);
(ii) k ≥ 2;
(iii) k ≥ n;
(iv) k ≥ n+ 1.

(g) Fix n ∈ N. The set of k for which Ck
n,−1 = 0 is

(i) ∅ (the empty set);
(ii) k ≥ 2;
(iii) k ≥ n;
(iv) k ≥ n+ 1.

(h) Consider the discrete heat equation with n = 1 houses, θ = −1/3 and
f(1) = 4. As j →∞, U(1, j),

(i) is always positive and tends to infinity;
(ii) alternates in sign between positive and negative and its absolute

value tends to infinity;
(iii) is always positive and tends to zero;
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(iv) alternates in sign between positive and negative and its absolute
value tends to zero.

(i) Consider the discrete heat equation with n = 1 houses, θ = 1/3 and
f(1) = 4. As j →∞, U(1, j),

(i) is always positive and tends to infinity;
(ii) alternates in sign between positive and negative and its absolute

value tends to infinity;
(iii) is always positive and tends to zero;
(iv) alternates in sign between positive and negative and its absolute

value tends to zero.
(j) Consider the discrete heat equation with n = 1 houses, θ = 1 and

f(1) = 4. As j →∞, U(1, j),
(i) alternates in sign between positive and negative and its absolute

value tends to infinity;
(ii) alternates in sign between positive and negative and its absolute

value always equals 4;
(iii) is always positive and tends to zero;
(iv) alternates in sign between positive and negative and its absolute

value tends to zero.
(k) Consider the discrete heat equation with n = 1 houses, θ = 2 and

f(1) = 4. As j →∞, U(1, j),
(i) alternates in sign between positive and negative and its absolute

value tends to infinity;
(ii) alternates in sign between positive and negative and its absolute

value always equals 4;
(iii) is always positive and tends to zero;
(iv) alternates in sign between positive and negative and its absolute

value tends to zero.
(l) Consider the discrete heat equation with n = 2 houses, θ = 1/4 and

any f = (5, 6). As j →∞, U(1, j) and U(2, j)
(i) both alternate in sign between positive and negative, and each

of their absolute values tends to infinity;
(ii) both alternate in sign between positive and negative and both

of their absolute values tend to zero;
(iii) both are always positive and tends to zero;
(iv) both are always positive and tend to infinity.
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(3) Write short answers. For example, if the answer is 1.5 or 3/2, either form
is acceptable. We will do our best to accept some forms that are not fully
reduced: for example, if a formula produces 6/4, then that’s OK, too; it is
not OK to unecessarily introduce a factor of 13524 in the numerator and
denominator and write the answer as 81144/54096.

(a) For n = 2, what is ‖Nrod,n‖∞ ?

(b) For n = 3, what is ‖Nrod,n‖∞ ?

(c) Consider the discrete heat equation with n = 2 houses (Homework 8,
Section 4), and θ = 1/3. If initially House 1 is at 5◦C and House 2 at
1◦C, what is the temperature of House 1 at time j = 1 and j = 2?

(d) Let A be an n× n matrix with ‖A‖∞ ≤ 1/2, and let

U = U(A) = (I −A)−1 − (I −A+A2 −A3).

Give the best possible upper bound on ‖U‖∞, i.e., find an M ∈ R such
that ‖U‖∞ ≤ M for all A (with ‖A‖∞ ≤ 1/2), and give an A such
that ‖U‖∞ = M .
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