CPSC 303 HOMEWORK 8, SOME SOLUTIONS, SPRING 2020

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised without explicit written permission from the copyright owner.

1. Section 1

Exercise 1.1. Which of the following functions satisfy the heat equation $u_t(x,t) = u_{xx}(x,t)$ for all $x, t \in \mathbb{R}$?

- 1.1(a) u(x,t) = 3 + 4x.
- 1.1(b) $u(x,t) = 3 + 4x + x^2$.
- 1.1(c) $u(x,t) = 3 + 4x + x^2 t$.

Solution: $u_x = 4 + 2x$, $u_{xx} = (4 + 2x)_x = 2$, and $u_t = -1$. So no, it is not true that $u_t(x,t) = u_{xx}(x,t)$ for all $x, t \in \mathbb{R}$.

1.1(d) $u(x,t) = 3 + 4x + x^2 - 2t$.

1.1(e) $u(x,t) = \sin(\omega x)e^{-t\omega^2}$ for any constant $\omega \in \mathbb{R}$.

Solution: $u_x = \omega \cos(\omega x)e^{-t\omega^2}, \ u_{xx} = -\omega^2 \sin(\omega x)e^{-t\omega^2}, \ u_t = -\omega^2 \sin(\omega x)e^{-t\omega^2}.$ Hence u satisfies $u_{xx} = u_t$ throughout \mathbb{R}^2 .

1.1(f) $u(x,t) = \cos(\omega x)e^{-t\omega^2}$ for any constant $\omega \in \mathbb{R}$.

Solution: $u_{xx} = u_t = -\omega^2 \cos(\omega x) e^{-t\omega^2}$.

1.1(g) $u(x,t) = \sinh(\omega x)e^{t\omega^2}$ for any constant $\omega \in \mathbb{R}$ (where $\sinh(x) \stackrel{\text{def}}{=} (e^x - e^{-x})/2$) is the hyperbolic sine.

Solution: $u_{xx} = u_t = \omega^2 \sinh(\omega x) e^{t\omega^2}$.

Research supported in part by an NSERC grant.

Exercise 1.2. For which $(x,t) \in \mathbb{R}^2$ is it true that $u_t(x,t) = u_{xx}(x,t)$ for the function:

1.2(a) $u(x,t) = 4x + t^2$?

Solution: $u_x = 4$, $u_{xx} = 0$, and $u_t = 2t$. Hence $u_t = u_{xx}$ whenever 2t = 0, i.e., when t = 0 (and x is arbitrary).

1.2(b) $u(x,t) = 4x^3 + t^2$?

Solution: $u_x = 12x^2$, $u_{xx} = 24x$, and $u_t = 2t$. Hence $u_t = u_{xx}$ whenever 2t = 24x, i.e., whenever t = 12x.

1.2(c) $u(x,t) = 2x^2 + 3t^3$?

Solution: $u_x = 4x$, $u_{xx} = 4$, and $u_t = 9t^2$. Hence $u_t = u_{xx}$ whenever $9t^2 = 4$, when $t^2 = 4/9$, i.e., when $t = \pm 2/3$ (and x is arbitrary).

1.2(d)
$$u(x,t) = 2x^2 - 3t^3$$
?

Exercise 1.3. Show that if u(x,t), v(x,t) both satisfy the heat equation at some point $(x_0, t_0) \in \mathbb{R}^2$, and $\alpha, \beta \in \mathbb{R}$, then

$$w = w(x,t) \stackrel{\text{def}}{=} \alpha u(x,t) + \beta v(x,t)$$

also satisfies the heat equation at (x_0, t_0) .

Solution: We have

$$w_x = \left(\alpha u + \beta v\right)_x = \alpha u_x + \beta v_x.$$

Similarly

$$w_{xx} = \left(\alpha u_x + \beta v_x\right)_x = \alpha u_{xx} + \beta v_{xx}.$$

And similarly

$$w_t = \left(\alpha u + \beta v\right)_t = \alpha u_t + \beta v_t.$$

So if u, v both satisfy the heat equation at (x_0, t_0) then

$$w_t(x_0, t_0) = \alpha u_t(x_0, t_0) + \beta v_t(x_0, t_0) = \alpha u_{xx}(x_0, t_0) + \beta v_{xx}(x_0, t_0) = w_x(x_0, t_0).$$

Hence w satisfies the heat equation at (x_0, t_0) .

Exercise 1.4. Let $R \subset \mathbb{R}^2$ be a subset ("R" is to suggest the word "region"). Let $c_0, c_1 \in \mathbb{R}$, and $u \colon \mathbb{R}^2 \to \mathbb{R}$ be any function, and let

$$v(x,t) = u(x,t) - (c_0 + c_1 x)$$

1.4(a) Show that u satisfies the heat equation in R, i.e., $u_t(x,t) = u_{xx}(x,t)$, for all $(x,t) \in R$, iff v satisfies the heat equation in R.

Solution: We have $v_x = u_x - c_1$ and hence $v_{xx} = u_{xx}$. Also $v_t = u_t - (c_0 + c_1x)_t = u_t$. Hence $u_t = v_t$ and $u_{xx} = v_{xx}$. It follows that for any fixed $(x,t), u_t(x,t) = u_{xx}(x,t)$ iff $v_t(x,t) = v_{xx}(x,t)$. Hence u satisfies the heat equation for all $(x,t) \in R$ iff v does.

1.4(b) Show that for any $a, b \in \mathbb{R}$ there is a unique c_0, c_1 such that $c_0 = a$ and $c_0 + c_1 = b$.

Solution: Subtracting the first equation from the second we have that $c_0 = a$ and $c_0 + c_1 = b$ is equivalent to the system $c_0 = a$ and $c_1 = b - a$; this determines c_0, c_1 uniquely in terms of a, b.

1.4(c) Show that if we replace the Dirichlet problem by more general Dirichlet data:

$$u(0,t) = a, \quad u(1,t) = b$$

for some constants $a, b \in \mathbb{R}$, it is equivalent to substitute

$$v(x,t) = u(x,t) - (c_0 + c_1 x)$$

(with c_0, c_1 as above) and solve the (zero-valued) Dirichlet problem above, replacing f(x) with $f(x) - c_0 - c_1 x$. [Remark: for simplicity we took $u: \mathbb{R}^2 \to \mathbb{R}$ instead of $u: [0, 1] \times [0, \infty) \to \mathbb{R}$; should this bother us?]

Solution: First, from part (a), u satisfies the heat equation in $(0,1) \times (0,\infty)$ iff v does. Second, u(0,t) = a for all t > 0 iff $v(0,t) = u(0,t) - c_0 = a - a = 0$ (for all t > 0). Third, u(1,t) = b for all t > 0 iff $v(1,t) = u(1,t) - (c_0 + c_1) = b - b = 0$ (for all t > 0). Fourth, u(0,x) = f(x) iff $v(0,x) = u(0,x) - (c_0 + c_1x) = f(x) - c_0 - c_1x$. This implies the equivalence of the above Dirichlet problem for v with the (not necessarily zero-valued) Dirichlet problem for u.

Note that the above equivalence uses only the values of u and v on $[0,1] \times [0,\infty)$, so u, v need only be defined on $[0,1] \times [0,\infty)$.

Exercise 3.1. Show that

$$D^{2,\text{centre}} = (\sigma - 1)(1 - \sigma^{-1}) = \sigma + \sigma^{-1} - 2.$$

Solution: By definition

$$D^{2,\text{centre}} = \sigma + \sigma^{-1} - 2.$$

But

$$(\sigma - 1)(1 - \sigma^{-1}) = \sigma(1 - \sigma^{-1}) - 1(1 - \sigma^{-1}) = \sigma - \sigma\sigma^{-1} - 1 + \sigma^{-1} = \sigma + \sigma^{-1} - 2$$

Exercise 3.2. Show that

$$D^{2,\text{centre}} = \sigma^{-1} D^2.$$

Solution:

$$\sigma^{-1}D^2 = \sigma^{-1}(\sigma - 1)^2 = \sigma^{-1}(\sigma^2 - 2\sigma + 1) = \sigma - 2 + \sigma^{-1}$$

which, by definition, equals $D^{2,\text{centre}}$.

Exercise 3.3. Say that instead of considering sequences

$$\mathbf{y} = \{y_n\}_{n \in \mathbb{Z}} = \{\dots, y_{-1}, y_0, y_1, y_2, \dots\}$$

we consider only the "truncated" finite sequences

$$\mathbf{y} = (y_1, \dots, y_n)$$

(you might think of the doubly infinite sequence where we enforce that $y_i = 0$ for all i > n and all i < 1). Say that we define σ_{trunc} to be the operator

$$\sigma_{\rm trunc}(y_1,\ldots,y_n) \stackrel{\rm def}{=} (y_2,y_3,\ldots,y_n,0).$$

Show that in matrix form, we have

$$\sigma_{\text{trunc}} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = S_{n,1} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

where $S_{n,1}$ is the matrix given in Homework 7 (and in the appendices here).

Solution: We have

$$\sigma_{\text{trunc}} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} = \begin{bmatrix} y_2 \\ y_3 \\ \vdots \\ y_n \\ 0 \end{bmatrix}$$

by definition. Also

$$S_{n,1}\begin{bmatrix}y_1\\y_2\\\vdots\\y_{n-1}\\y_n\end{bmatrix} = \begin{bmatrix}0 & 1 & \cdots & 0 & 0\\0 & 0 & \cdots & 0 & 0\\\vdots & \vdots & \ddots & \vdots & \vdots\\0 & 0 & \cdots & 0 & 1\\0 & 0 & \cdots & 0 & 0\end{bmatrix} \begin{bmatrix}y_1\\y_2\\\vdots\\y_{n-1}\\y_n\end{bmatrix} = \begin{bmatrix}y_2\\y_3\\\vdots\\y_n\\0\end{bmatrix}$$

Comparing the right-hand-sides of the two equations displayed above gives the desired equality.

Exercise 4.1. Consider the discrete heat equation in the case n = 1; therefore there is only House 1, and it is incident upon a fictitious House 0 and House 2 that are always at 0°C.

4.1(a) Show that for any $j \ge 0$, we have

 $\text{Temp}(1, j + 1) = (1 - 2\theta)\text{Temp}(j, 1).$

Solution: By definition we have that

$$\operatorname{Temp}(1, j+1) = \operatorname{Temp}(1, j) + \theta D_i^{2, \operatorname{centre}} \operatorname{Temp}(i, j)$$
$$= \operatorname{Temp}(1, j) + \theta \left(\operatorname{Temp}(0, j) + \operatorname{Temp}(2, j) - 2 \operatorname{Temp}(1, j) \right) = \operatorname{Temp}(1, j) \left(1 - 2\theta \right).$$

4.1(b) Given the initial temperature Temp(1,0) = f(1) of House 1, describe Temp(1,j) as a function of f(1) and j.

Solution:

$$Temp(1, j) = (1 - 2\theta)Temp(1, j - 1)$$
$$= (1 - 2\theta)^2 Temp(1, j - 2) = \dots = (1 - 2\theta)^j Temp(1, 0) = (1 - 2\theta)^j f(1)$$

4.1(c) Show that for $0 < \theta \le 1/2$, and f(1) > 0, Temp(1, j) is positive for all j and $\text{Temp}(1, j) \to 0$ as $j \to \infty$.

Solution: In this case

$$0 > -2\theta > -1$$

and therefore

 $1 > 1 - 2\theta > 0.$

Hence $(1-2\theta)^j$ is positive for all j > 0, and $(1-2\theta)^j \to 0$ as $j \to \infty$. If f(1) > 0 then $(1-2\theta)^j f(1)$ is positive for all j > 0, and $(1-2\theta)^j f(1) \to 0$ as $j \to \infty$.

4.1(d) If $1/2 < \theta < 1$ and f(1) > 0, how does the sign of Temp(1, j) behave?

Solution: In this case

$$-1 > -2\theta > -2$$

and therefore

 $0 > 1 - 2\theta > -1.$

It follows that $(1 - 2\theta)^j$ is positive for j even and negative for j odd. If f(1) > 0, then the same is true for $(1 - 2\theta)^j f(1)$.

4.1(e) If $\theta < 0$ and f(1) > 0, what happens to Temp(1, j) as $j \to \infty$?

Solution: if $\theta < 0$ then $-2\theta > 0$ and hence $1 - 2\theta > 1$. Hence $(1 - 2\theta)^j \rightarrow \infty$ as $j \rightarrow \infty$. If f(1) > 0, then the same is true for $(1 - 2\theta)^j f(1)$.

Exercise 4.2. Consider the case of n = 1 in Exercise 4.1, with Temp(1,0) = f(1) a fixed value. Fix an integer T > 0. For any $m \in \mathbb{N}$, let $\theta = 1/m$ and set g(m) = Temp(1,Tm) (with $\theta = 1/m$). Show that

$$\lim_{m \to \infty} g(m) = e^{-2\theta T} f(1).$$

[Hint: first show that $g(m) = (1 - 2/m)^{Tm}$. Then apply ln to both sides; at this point you can use l'Hôpital's rule or Taylor's theorem.]

Solution: According to Exercise 4.1,

$$g(m) = (1 - 2\theta)^{Tm} f(1) = (1 - 2/m)^{Tm} f(1).$$

So first consider

$$L = \lim_{m \to \infty} (1 - 2/m)^m.$$

Applying ln to both sides we have

$$\ln(L) = \lim_{m \to \infty} m \ln(1 - 2/m).$$

Taylor's theorem implies that as $m \to \infty$,

$$\ln(1 - 2/m) = -2/m + O(1/m^2),$$

and hence

$$\ln(L) = \lim_{m \to \infty} Tm \left(-2/m + O(1/m^2) \right) = -2T.$$

Hence

$$L = e^{-2T}$$

and so

$$\lim_{m \to \infty} g(m) = f(1) \lim_{m \to \infty} (1 - 2/m)^{Tm} = f(1)e^{-2T}.$$

Exercise 4.3. Let n = 2 and $\theta \in \mathbb{R}$ be arbitrary.

4.3(a) Show that if for some j we have Temp(1, j) = Temp(2, j), then

 $\operatorname{Temp}(1,j+1) = \operatorname{Temp}(2,j+1) = (1-\theta)\operatorname{Temp}(1,j) = (1-\theta)\operatorname{Temp}(2,j)$

Solution: We have

 $\operatorname{Temp}(1, j+1) = \operatorname{Temp}(1, j) + \theta D_i^{2,\operatorname{centre}} \operatorname{Temp}(i, j)$ $= \operatorname{Temp}(1, j) + \theta \left(\operatorname{Temp}(0, j) + \operatorname{Temp}(2, j) - 2\operatorname{Temp}(1, j) \right)$ $= \operatorname{Temp}(1, j) + \theta \left(0 + \operatorname{Temp}(1, j) - 2\operatorname{Temp}(1, j) \right) = \operatorname{Temp}(1, j)(1 - \theta)$ Similarly $\operatorname{Temp}(2, j+1) = \operatorname{Temp}(2, j) + \theta \left(\operatorname{Temp}(1, j) + \operatorname{Temp}(3, j) - 2\operatorname{Temp}(2, j) \right)$

 $= \operatorname{Temp}(2, j) + \theta \big(\operatorname{Temp}(2, j) + 0 - 2\operatorname{Temp}(2, j) \big) = \operatorname{Temp}(2, j)(1 - \theta).$

4.3(b) Assume that $f: \{1,2\} \to \mathbb{R}$ satisfies f(1) = f(2), and let Temp(i,0) = f(i) for i = 1, 2. Show that

 $\text{Temp}(1, j) = \text{Temp}(2, j) = (1 - \theta)^j f(1).$

Solution: By the previous part we have

 $\begin{aligned} \text{Temp}(1,1) &= (1-\theta)f(1) = (1-\theta)f(2) = \text{Temp}(2,1). \end{aligned}$ Simarly $\begin{aligned} \text{Temp}(1,2) &= \text{Temp}(2,2) = (1-\theta)^2 f(1). \end{aligned}$ Applying this argument repeatedly (or, by induction on j) $\end{aligned}$ $\begin{aligned} \text{Temp}(1,j) &= \text{Temp}(2,j) = (1-\theta)^j f(1). \end{aligned}$

4.3(c) Say that f(1) = f(2) > 0, and that $0 < \theta < 1$. What is lim Tomp(1, i)

$$\lim_{j\to\infty} \operatorname{Iemp}(1,j)$$

(and justify your answer)?

Solution: In this case $0 > -\theta > -1$ and so $1 > 1 - \theta > 0$. Hence $(1-\theta)^j \to 0$ as $j \to \infty$, and hence

$$\lim_{j \to \infty} \operatorname{Temp}(1, j) = \lim_{j \to \infty} (1 - \theta)^j f(1) = 0.$$

4.3(d) Say that f(1) = f(2) > 0, and that $\theta < 0$. What is

$$\lim_{j \to \infty} \operatorname{Temp}(1, j)$$

(and justify your answer)?

Solution: In this case $0 < -\theta$ and so $1 < 1 - \theta$. Hence $(1 - \theta)^j \to \infty$ as $j \to \infty$, and hence

$$\lim_{j \to \infty} \operatorname{Temp}(1, j) = \lim_{j \to \infty} (1 - \theta)^j f(1) = \infty$$

Exercise 5.1. Say that for all j we gather all the temperatures at time j into a vector,

(1)
$$\operatorname{TempProfile}(j) = \begin{bmatrix} \operatorname{Temp}(1,j) \\ \operatorname{Temp}(2,j) \\ \vdots \\ \operatorname{Temp}(n,j) \end{bmatrix}$$

5.1(a) Show that the discrete heat equation implies that for all $j \ge 0$ we have

$$\text{TempProfile}(j+1) = \left(I + \theta \left(N_{\text{rod},n} - 2I\right)\right) \text{TempProfile}(j),$$

where $N_{\mathrm{rod},n}$ is the matrix given in Appendix ??.

Solution: For each j > 0 and each i between 2 and n we have

 $\operatorname{Temp}(i, j+1) = \operatorname{Temp}(i, j) + \theta \big(\operatorname{Temp}(i-1, j) + \operatorname{Temp}(i+1, j) - 2\operatorname{Temp}(i, j) \big),$

and the same is true of i=1 and i=n provided we ignore $\mathrm{Temp}(0,j)=0=\mathrm{Temp}(n+1,j).$ Hence

$$\begin{bmatrix} \operatorname{Temp}(1, j+1) \\ \operatorname{Temp}(2, j+1) \\ \vdots \\ \operatorname{Temp}(n-1, j+1) \\ \operatorname{Temp}(n, j+1) \end{bmatrix} = \begin{bmatrix} \operatorname{Temp}(1, j) \\ \operatorname{Temp}(2, j) \\ \vdots \\ \operatorname{Temp}(n-1, j) \\ \operatorname{Temp}(n, j) \end{bmatrix} + \theta \left(\begin{bmatrix} 0 \\ \operatorname{Temp}(1, j) \\ \vdots \\ \operatorname{Temp}(n-2, j) \\ \operatorname{Temp}(n-1, j) \end{bmatrix} + \begin{bmatrix} \operatorname{Temp}(2, j) \\ \operatorname{Temp}(3, j) \\ \vdots \\ \operatorname{Temp}(n, j) \\ 0 \end{bmatrix} - 2 \begin{bmatrix} \operatorname{Temp}(1, j) \\ \operatorname{Temp}(2, j) \\ \vdots \\ \operatorname{Temp}(n-1, j) \\ \operatorname{Temp}(n, j) \end{bmatrix} \right)$$

Now we recognize

$$\begin{bmatrix} \operatorname{Temp}(2,j) \\ \operatorname{Temp}(3,j) \\ \vdots \\ \operatorname{Temp}(n,j) \\ 0 \end{bmatrix} = S_{n,1} \begin{bmatrix} \operatorname{Temp}(1,j) \\ \operatorname{Temp}(2,j) \\ \vdots \\ \operatorname{Temp}(n-1,j) \\ \operatorname{Temp}(n,j) \end{bmatrix}$$

and similarly

$$\begin{bmatrix} 0\\ \operatorname{Temp}(1,j)\\ \vdots\\ \operatorname{Temp}(n-2,j)\\ \operatorname{Temp}(n-1,j) \end{bmatrix} = S_{n,-1} \begin{bmatrix} \operatorname{Temp}(1,j)\\ \operatorname{Temp}(2,j)\\ \vdots\\ \operatorname{Temp}(n-1,j)\\ \operatorname{Temp}(n,j) \end{bmatrix}$$

where $S_{n,1}$ and $S_{n,-1}$ are the shift matrices/operators given in Appendix B. Hence

 $\text{TempProfile}(j+1) = \text{TempProfile}(j) + \theta (S_{n,-1} + S_{n,1} - 2I) \text{TempProfile}(j)$

$$= (I + \theta (N_{\mathrm{rod},n} - 2I))$$
TempProfile (j) .

10

5.1(b) Show that for any $j \ge 0$ we have

TempProfile
$$(j) = (I + \theta (N_{rod,n} - 2I))^{j}$$
TempProfile (0) .

Solution:

$$\operatorname{TempProfile}(j) = \left(I + \theta \left(N_{\operatorname{rod},n} - 2I\right)\right) \operatorname{TempProfile}(j-1)$$
$$= \left(I + \theta \left(N_{\operatorname{rod},n} - 2I\right)\right)^{2} \operatorname{TempProfile}(j-2) = \dots = \left(I + \theta \left(N_{\operatorname{rod},n} - 2I\right)\right)^{j} \operatorname{TempProfile}(0).$$

Exercise 5.2. Let n = 2 and $\theta = 1/3$, and let TempProfile be as in (1). 5.2(a) Show that for any $j \ge 0$

TempProfile
$$(j) = \begin{pmatrix} 1 \\ 3 \\ 1 \\ 1 \end{pmatrix}^{j}$$
TempProfile (0)

Solution: We have

$$I + \theta \left(N_{\mathrm{rod},n} - 2I \right) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (1/3) \left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

The result now follows from Exercise 5.1(b).

5.2(b) Find a formula for TempProfile(j) for $j \ge 1$ in terms of a = Temp(1,0) + Temp(2,0).

Solution:

$$\text{TempProfile}(1) = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{TempProfile}(0) = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \text{Temp}(1,0) \\ \text{Temp}(2,0) \end{bmatrix} = \begin{bmatrix} a/3 \\ a/3 \end{bmatrix}$$

Then

TempProfile(2) =
$$\frac{1}{3} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a/3 \\ a/3 \end{bmatrix} = \frac{2}{3} \begin{bmatrix} a/3 \\ a/3 \end{bmatrix}$$
.

Similarly

TempProfile(3) =
$$\left(\frac{2}{3}\right)^2 \begin{bmatrix} a/3\\a/3\end{bmatrix}$$
,

and repeating this arguments shows that for $j \ge 1$,

TempProfile(j) =
$$\left(\frac{2}{3}\right)^{j-1} \begin{bmatrix} a/3\\a/3 \end{bmatrix}$$
.

Exercise 6.1. Imagine a variant of the *n*-House discrete heat transfer equation, where the left side of House 1 is connected to the right side of House *n*, instead of each connected to a 0° C heat absorbing sink¹. In this case the discrete heat equation is the same, except that we identify House 0 with House *n* and House n + 1 with House 1, i.e., we work with house numbers "modulo *n*." More precisely we define

$$\operatorname{Temp}_{\operatorname{ring}}(i,j) = \left\{ \begin{array}{ll} \operatorname{Temp}(n,j) & \text{if } i = 0, \\ \operatorname{Temp}(i,j) & \text{if } 1 \le i \le n-1, \text{ and} \\ \operatorname{Temp}(1,j) & \text{if } i = n+1. \end{array} \right\}$$

and (10) becomes

$$\operatorname{Temp}_{\operatorname{ring}}(i,j+1) = \operatorname{Temp}_{\operatorname{ring}}(i,j) + \theta D_i^{2,\operatorname{centre}} \operatorname{Temp}_{\operatorname{ring}}(i,j).$$

Show that with notation as in (13), we have

TempProfile(j) =
$$(I + \theta (N_{\text{ring},n} - 2I))^{J}$$
TempProfile(0),

where $N_{\text{ring},n}$ is the matrix given in Appendix B.

Solution: Because for the modulo n definition of Temp_{ring}, we get the same result as in Exercise 5.1, except that instead of

$$\begin{bmatrix} 0 \\ \operatorname{Temp}(1,j) \\ \vdots \\ \operatorname{Temp}(n-2,j) \\ \operatorname{Temp}(n-1,j) \end{bmatrix} \text{ and } \begin{bmatrix} \operatorname{Temp}(2,j) \\ \operatorname{Temp}(3,j) \\ \vdots \\ \operatorname{Temp}(n,j) \\ 0 \end{bmatrix}$$

we get

$$\begin{array}{c} \operatorname{Temp}(n,j) \\ \operatorname{Temp}(1,j) \\ \vdots \\ \operatorname{Temp}(n-2,j) \\ \operatorname{Temp}(n-1,j) \end{array} \quad \text{and} \quad \begin{bmatrix} \operatorname{Temp}(2,j) \\ \operatorname{Temp}(3,j) \\ \vdots \\ \operatorname{Temp}(n,j) \\ \operatorname{Temp}(n,j) \\ \operatorname{Temp}(1,j) \end{bmatrix}$$

Since the 0's are now replaced with Temp(n, j) and Temp(1, j), which gives $N_{\text{rod},n}$ with 1's in the upper right and lower left corners of the matrix, so $N_{\text{ring},n}$ replaces $N_{\text{rod},n}$ in the solution to Exercise 5.1.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf

¹ Perhaps n is very large and the houses are in a large "ring" in 2-dimensions, which is more simply modeled by a thin, 1-dimensional loop. Or maybe what seems like a flat, infinite 1-dimensional universe actually "wraps" around itself. Feel free to choose the story here.