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1. SEcTION 1

Exercise 1.1. Which of the following functions satisfy the heat equation u;(x, t) =
Ugq(x,t) for all ,t € R?

1.1(a) u(z,t) =3+ 4x.

1.1(b) u(z,t) = 3 + 4 + 2.

1.1(c) u(z,t) =3 +4x + 22 —t.

Solution: wu, =4+ 2z, uy, = (4+ 22), = 2, and u; = —1. So no, it is
not true that u.(z,t) = uze(z,t) for all z,¢t € R.

1.1(d) u(z,t) = 3+ 4z + 2% — 2t.
1(e) u(z,t) = sin((,u:c)e’t‘*’2 for any constant w € R.
Solution: Up = W cos(wm)e‘t“’z, Upy = —w? sin(wx)e_t‘"z, Uy =
—w? sin(wx)e*t“ﬂ. Hence u satisfies uz, = u; throughout R2.
1.1(f) w(z,t) = cos(wz)e ™" for any constant w € R.

2

2 tw

Solution: wu,, = u; = —w? cos(wz)e™
1.1(g) u(z,t) = sinh(wx)et“’2 for any constant w € R (where sinh(z) = (e* —
e~ *)/2) is the hyperbolic sine.

. . 2
Solution: ., = u; = w?sinh(wx)e'®
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Exercise 1.2. For which (z,t) € R? is it true that w;(x,t) = uz,(z,t) for the
function:

1.2(a) u(z,t) =4z + 12?7

Solution: wu, = 4, uz, = 0, and u; = 2t. Hence u; = u,, whenever
2t =0, i.e., when t = 0 (and z is arbitrary).

1.2(b) u(z,t) = 4a® + 27

Solution: u, = 1222, uz, = 24z, and u; = 2t. Hence u; = g, whenever
2t = 24z, i.e., whenever t = 12z.

1.2(c) u(x,t) = 222 + 337

Solution: wu, = 4, uyy = 4, and u; = 9t2. Hence u; = uy, whenever
9t2 = 4, when t? = 4/9, i.e., when t = +2/3 (and z is arbitrary).

1.2(d) u(z,t) = 22% — 337
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Exercise 1.3. Show that if u(x,t),v(x,t) both satisfy the heat equation at some
point (x¢,t9) € R?, and o, 8 € R, then
w = w(z,t) Lof au(z,t) + po(zx,t)

also satisfies the heat equation at (zq, o).

Solution: We have
Wy = (au + Bv)x = auy + [ug.
Similarly
Wez = (QUy + Bv2) | = Qe + [V
And similarly
wy = (au + ,Bv)t = auy + Puy.
So if u,v both satisfy the heat equation at (xg, o) then

wy (o, to) = aue (o, to) + B0, to) = Qge(To,to) + FUz2(T0, to) = wa (o, to)-

Hence w satisfies the heat equation at (zo, to).
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Exercise 1.4. Let R C R? be a subset (“R” is to suggest the word “region”). Let
co,c1 € R, and u: R?2 — R be any function, and let

1.4(a)

1.4(b)

1.4(c)

v(z,t) = u(x,t) — (co + c12).

Show that w satisfies the heat equation in R, i.e., u;(x,t) = ug,(x,t), for
all (z,t) € R, iff v satisfies the heat equation in R.

Solution: We have v, = u, — ¢; and hence vy, = ugz,. Also vy =
us — (co + 1) = up. Hence up = vy and uyy = Vg It follows that for any
fixed (x,t), ut(x,t) = ugy(x,t) iff vi(x,t) = v4e(z,t). Hence u satisfies the
heat equation for all (z,t) € R iff v does.

Show that for any a,b € R there is a unique cg, ¢; such that ¢ = a and
co+c1 =b.

Solution: Subtracting the first equation from the second we have that
co = a and ¢cg + ¢; = b is equivalent to the system ¢y = a and ¢; == b — a;
this determines cg, ¢; uniquely in terms of a, b.

Show that if we replace the Dirichlet problem by more general Dirichlet
data:
u(0,t) =a, u(l,t)=">

for some constants a,b € R, it is equivalent to substitute

v(z,t) = u(z,t) — (¢ + c12)
(with ¢, c1 as above) and solve the (zero-valued) Dirichlet problem above,
replacing f(z) with f(xz) — ¢g — cixz. [Remark: for simplicity we took
u: R? — R instead of u: [0,1] x [0,00) — R; should this bother us?]

Solution: First, from part (a), u satisfies the heat equation in (0,1) x
(0, 00) iff v does. Second, u(0,t) = a for all ¢ > 0 iff v(0,¢) = u(0,t) — co =
a—a =0 (for all ¢t > 0). Third, u(1,t) = b for all t > 0 iff v(1,¢) =
u(1,t) — (co +¢1) = b—>b =0 (for all ¢ > 0). Fourth, u(0,z) = f(z) iff
v(0,z) = u(0,2) — (co+c12) = f(x) —co —c1z. This implies the equivalence
of the above Dirichlet problem for v with the (not necessarily zero-valued)
Dirichlet problem for wu.

Note that the above equivalence uses only the values of u and v on
[0,1] x [0,00), so u,v need only be defined on [0,1] x [0, c0).
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3. SECTION 3
Exercise 3.1. Show that
D*eentre — (6 _ 1) (1—0 ) =040 -2

Solution: By definition
D2,Centre =04+ 0_—1 —9.
But
(c-1D(1-0cYH=0cl-cH)-11-0cYN=0-00'-14+0 ' =0+0"'-2.

Exercise 3.2. Show that
D2,centre —_ U_lDQ.

Solution:
o 'D’=0"Yo-1)?=0""(0c-20+1)=0—-240""
which, by definition, equals D?°entre,

Exercise 3.3. Say that instead of considering sequences

Y ={yntnez={ - y-1,%0, 91,92, ..}

we consider only the “truncated” finite sequences

Y =1 Yn)

(you might think of the doubly infinite sequence where we enforce that y; = 0 for
all i > n and all i < 1). Say that we define ot;unc to be the operator

def
Jtrunc(yla"'ayn) :e (yQava“'»ynvO)'

Show that in matrix form, we have

Y Y1

Y2 Y2
Otrunc : = Pn,l

Yn Yn

where S, 1 is the matrix given in Homework 7 (and in the appendices here).



6 JOEL FRIEDMAN

Solution: We have

'A% y2_

Y2 Ys

Otrunc =

Yn—1 Yn

Yn 0

by definition. Also

Y1 0 1 0 0 _yl Y2
Y2 00 - 00 Y2 Y3
Swa| tol=lr o o=
Yn—1 00 - 0 1 Yn—1 Yn
UYn 00 -~ 0 0] [ yn 0

Comparing the right-hand-sides of the two equations displayed above gives the
desired equality.
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4. SECTION 4

Exercise 4.1. Consider the discrete heat equation in the case n = 1; therefore
there is only House 1, and it is incident upon a fictitious House 0 and House 2 that
are always at 0°C.

4.1(a) Show that for any j > 0, we have
Temp(1,5 + 1) = (1 — 20)Temp(j, 1).

Solution: By definition we have that
Temp(1,j 4 1) = Temp(1, ) + 0 D™ Temp(i, 5)
= Temp(1,j) + G(Temp(O,j) + Temp(2,j) — 2Temp(1,j)) = Temp(l,j)(l — 29).

4.1(b) Given the initial temperature Temp(1,0) = f(1) of House 1, describe
Temp(1,j) as a function of f(1) and j.

Solution:
Temp(1,5) = (1 — 20)Temp(1,j — 1)
= (1 —260)*Temp(1,5 — 2) = --- = (1 — 26)? Temp(1,0) = (1 — 20)? f(1)

4.1(c) Show that for 0 < 6 < 1/2, and f(1) > 0, Temp(1,j) is positive for all j
and Temp(1,j) — 0 as j — oo.
Solution: In this case
0>—-20> -1

and therefore

1>1-20>0.
Hence (1 — 26)7 is positive for all j > 0, and (1 — 260)7 — 0 as j — oo. If
f(1) > 0 then (1 —26)7 f(1) is positive for all 7 > 0, and (1 —26)7f(1) = 0
as j — o0.

4.1(d) If1/2 < 8 < 1 and f(1) > 0, how does the sign of Temp(1, j) behave?

Solution: In this case
—1>-20> -2

and therefore
0>1-20>—1.

It follows that (1 — 20)7 is positive for j even and negative for j odd. If
f(1) > 0, then the same is true for (1 —20)7 f(1).

4.1(e) If 6 < 0 and f(1) > 0, what happens to Temp(1,j) as j — co?

Solution: if < 0 then —26 > 0 and hence 1—26 > 1. Hence (1—26)7 —
00 as j — oo. If f(1) > 0, then the same is true for (1 —260)7 f(1).
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Exercise 4.2. Consider the case of n =1 in Exercise 4.1, with Temp(1,0) = f(1)
a fixed value. Fix an integer T > 0. For any m € N, let § = 1/m and set
g(m) = Temp(1,Tm) (with § = 1/m). Show that

Tim_g(m) = e 2 f(1).

[Hint: first show that g(m) = (1 —2/m)T™. Then apply In to both sides; at this
point you can use 'Hopital’s rule or Taylor’s theorem.]

Solution: According to Exercise 4.1,
g(m) = (1-20)""f(1) = (1 - 2/m)""™ f(1).
So first consider

L= lim (1-2/m)™.

m—o0
Applying In to both sides we have
In(L) = lim mln(l —2/m).
m—0o0
Taylor’s theorem implies that as m — oo,
In(1—2/m) = —2/m+ O(1/m?),

and hence
In(L) = lim Tm(-2/m+ O(l/mQ)) = _9T.
m—0o0
Hence
L=e?T
and so

lim g(m) = f(1) lim (1 —2/m)T™ = f(1)e .

m—o0 m— o0

Exercise 4.3. Let n =2 and 6 € R be arbitrary.
4.3(a) Show that if for some j we have Temp(1, j) = Temp(2, j), then

Temp(1,j + 1) = Temp(2, j + 1) = (1 — 6)Temp(1, j) = (1 — 6)Temp(2, 5)

Solution: We have
Temp(1,j 4 1) = Temp(1, 5) + 6 D> Temp(i, ;)
= Temp(1, j) + 0(Temp(0,j) + Temp(2,7) — 2Temp(1,j))
= Temp(1,j) + 0(0 + Temp(1,j) — 2Temp(1,j)) = Temp(1,7)(1 —6)
Similarly
Temp(2,j + 1) = Temp(2,5) + 9(Temp(1,j) + Temp(3,j) — 2Ternp(2,j))

= Temp(2, j) + 6(Temp(2, j) + 0 — 2Temp(2, j)) = Temp(2, j)(1 — 6).
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4.3(b) Assume that f: {1,2} — R satisfies f(1) = f(2), and let Temp(7,0) = f(i)
for ¢+ = 1,2. Show that
Temp(1,j) = Temp(2, j) = (1 - 0)’ f(1).

Solution: By the previous part we have
Temp(1,1) = (1 —0)f(1) = (1 — 0)f(2) = Temp(2,1).
Simarly
Temp(1,2) = Temp(2,2) = (1 — 0)?f(1).
Applying this argument repeatedly (or, by induction on j7)

Temp(1, j) = Temp(2, j) = (1 - 6)’ f(1).

4.3(c) Say that f(1) = f(2) >0, and that 0 < § < 1. What is
lim Temp(1,5)
J_>OO
(and justify your answer)?

Solution: In this case 0 > — > —1 and so 1 > 1 —6 > 0. Hence
(1-0) — 0 as j — oo, and hence
lim Temp(1,5) = lim (1 —0)7f(1) = 0.
J—00 J—00
4.3(d) Say that f(1) = f(2) > 0, and that 6 < 0. What is
lim Temp(1, )
j—o0o
(and justify your answer)?
Solution: 1In this case 0 < —0 and so 1 < 1 — 6. Hence (1 —6)7 — oo as
j — oo, and hence
lim Temp(1,5) = lim (1 —60)7f(1) = 0o

J—00 J]—00
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5. SECTION 5

Exercise 5.1. Say that for all j we gather all the temperatures at time j into a
vector,

Temp(1, j)
Temp(2, 7)
(1) TempProfile(j) = }

Temp(n, j)

5.1(a) Show that the discrete heat equation implies that for all j > 0 we have
TempProfile(j + 1) = (I + 6(Nrod,n — 2]))TempProﬁle(j)7
where Nyoq p is the matrix given in Appendix ?7.
Solution: For each j > 0 and each ¢ between 2 and n we have

Temp(i, j + 1) = Temp(i, j) + 6(Temp(i — 1, 5) + Temp(i + 1, j) — 2Temp(i, 5)),

and the same is true of ¢ = 1 and i = n provided we ignore Temp(0, j) =
0 = Temp(n + 1, 5). Hence

Temp(1,j + 1) Temp(1, j) 0 Temp(2, j) Temp(1, j)
Temp(2,j + 1) Temp(2, j) Temp(1, j) Temp(3, j) Temp(2, j)
s = : +0 z | |2 z
Temp(n—1,j+1)|  |Temp(n —1,) Temp(n—2,7)|  |Temp(n,j)| | Temp(n—1,7)
Temp(n,j+ 1) Temp(n, j) Temp(n — 1, 5) 0 Temp(n, j)
Now we recognize
Temp(2, j) Temp(1, j)
Temp(3, 7) Temp(2, j)
. = n’l .
Temp(n, j) Temp(n — 1, )
0 Temp(n, j)
and similarly
0 Temp(1, 5)
Temp(1, j) Temp(2, 5)
: = S’”‘v*l
Temp(n — 2, j) Temp(n — 1, j)
Temp(n — 1,5) Temp(n, 7)

where S, 1 and S,, _1 are the shift matrices/operators given in Appendix B.
Hence

TempProfile(j + 1) = TempProfile(j) 4 6(S,,—1 + Sy,1 — 2I) TempProfile(j)

= (14 8(Noan — 21) ) TempProfile().
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5.1(b) Show that for any j > 0 we have
J
TempProfile(j) = (I + H(Nrod)n — 2])) TempProfile(0).

Solution:

TempProfile(j) = (I + 0(Nrod,n — 2]))TempProﬁle(j -1)

) .
= (I—|—9(de7n—21)) TempProfile(j—2) = --- = (I—f—@(Nrod,n—QI))jTempProﬁle(O).

Exercise 5.2. Let n =2 and 6 = 1/3, and let TempProfile be as in (1).
5.2(a) Show that for any j >0
1
TempProfile(j) = ( E 1

J
3 ] ) TempProfile(0)

Solution: We have

I+0(Nrod,n21)[(1) ?}Jr(l/g)({(l) 5]2{(1) ﬂ)

_1p
311
The result now follows from Exercise 5.1(b).

5.2(b) Find a formula for TempProfile(j) for j > 1 in terms of @ = Temp(1,0) +

Temp(2,0).
Solution:
111 11 1] |[Temp(1,0)| [a/3
TempProﬁle(l)fg [1 J TempProfile(0) 3 L 1] [Temp(Q,O) = |a/3
Then

———

TempProfile(3) = (;)2 {Z@ :

and repeating this arguments shows that for j > 1,

TempProfile(j) = (g)jl B@ .

Similarly
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6. SECTION 6

Exercise 6.1. Imagine a variant of the n-House discrete heat transfer equation,
where the left side of House 1 is connected to the right side of House n, instead
of each connected to a 0°C heat absorbing sink!. In this case the discrete heat
equation is the same, except that we identify House 0 with House n and House
n + 1 with House 1, i.e., we work with house numbers “modulo n.” More precisely
we define

Temp(n,j) ifi=0,

Temp,,(i,7) = { Temp(s,j) if1<i<n-—1, and
Temp(l,j) ifi=n+1.

and (10) becomes
Tempyipg (i, 7 + 1) = Tempig (i, ) + 0 D7 " Tempygyg (i, ).
Show that with notation as in (13), we have
TempProfile(j) = (I + G(Nring’n — 2]))jTelrinlroﬁle(O)7
where Nyingn is the matrix given in Appendix B.

Solution: Because for the modulo n definition of Temp,;,,,, we get the same result
as in Exercise 5.1, except that instead of

0 [Temp(2, )]
Temp(1, j) Temp(3, j)
and ,
Temp(n - 23 .7) Temp(n, ])
| Temp(n — 1, ) | i 0 |
we get
Temp(n,j) | [ Temp(2, )]
Temp(1, j) Temp(3, j)
and :
Temp(n - 27 j) Temp(n, ])
_Temp(n - 1aj)_ _Temp(]-vj)_

Since the 0’s are now replaced with Temp(n, j) and Temp(1, j), which gives Nyod n
with 1’s in the upper right and lower left corners of the matrix, so Nying n replaces
Niod,n in the solution to Exercise 5.1.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC
V6T 1Z4, CANADA.

E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~ jf

1 Perhaps n is very large and the houses are in a large “ring” in 2-dimensions, which is
more simply modeled by a thin, 1-dimensional loop. Or maybe what seems like a flat, infinite
1-dimensional universe actually “wraps” around itself. Feel free to choose the story here.
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