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(1) Problem 1 (in the Exercise section) of the handout “Normal and Subnormal
Numbers in Double Precision.”

Solution:

MATLAB returns 1.7977e+308 for n = 50, 51, 52, and Inf for n =
53, 54, 55. The largest number in double precision is 21023(2 − 2−52) (see
equation (1) on page 2 of the handout), which is why MATLAB reports Inf
for n = 53, 54, 55.
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(2) Problem 2 (in the Exercise section) of the handout “Normal and Subnormal
Numbers in Double Precision.”

Solution:

(a) For small n you see the exact solution, i.e., C1 +C2(3/4)n with C2 = 1
and C1 zero or negligible. Since MATLAB reports x{250} as 9.3378e-
20, for large n you numerically see the solution C1 equal to 9.3378e-20
and C2 zero or negligible. Hence the values of C1, C2 (as far as we can
numerically observe) that explain both the small n and large n values
are 9.3378e-20 and 1.

(b) MATLAB reports columns 1 through 25 of ratio as 1, and the
larger columns as 1.0000. Similarly, it reports the first 25 values of
ratio versus one as 0, and the remaining values begin at 1.1102e-
16, for the 26th value, and ending at 8.3189e-13, in a fashion that
roughly increases but does not strictly increase from the 26th value to
the 250th value (the fact that the values sometimes decrease can be
viewed in many places along the sequence).

(c) MATLAB reports 1 only when the numerical difference between (3/4)n

and C1 + (3/4)n with C1 = 9.3378e− 20 is 0. When this difference
is nonzero numerically, i.e. 1.1102e-16 or larger, MATLAB reports
1.0000. So MATLAB reports 1 when a value is exactly 1 in double
precision, and 1.0000 when a value is not exactly 1 in double precision
(even if this difference is 1.1102e-16, and can be accounted by the limit
of finite precision).

(d) Here MATLAB reports 1 for ratio and 0 for ratio versus one again
for the first 25 values, but also for 283rd values and higher.

[The homework does not require you to explain this, but the reason
that the higher values are 1 and 0 in the experiment with 400 is that
x{250} is not the (double precision) limit of the sequence, whereas as
x{400} is; you can see this not (you can see this by typing x{400} −
x{250} and x{400} − x{399}, etc.).
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(3) Problem 3 (in the Exercise section) of the handout “Normal and Subnormal
Numbers in Double Precision.”

Solution:

(a) MATLAB reports x{200} as 9.3378e-20.
(b) MATLAB reports x{200} as 3.6854e-30, -3.6019e-39, -7.5418e-49 for

r = 3/8, 3/16, 3/32 respectively. Hence the reported values of x{200}
descrease in absolute value by roughly 10−10 in each successive exper-
iment.

(c) The values of 3n times the powers of 2 involved fail to be exact (in
double precision) when it takes more than 53 bits to represent 3n

(These numbers involved in the experiments are all normal, and so
you can expect 53 bits of precision, i.e., ”1.” followed by 52 bits.) So
you should imprecision near the value of n where 3n ≥ 254, which is
roughly n = 54 log(2)/ log(3) = 34.07 . . . Hence with each successive
experiment, which divides the result by an additional 2n, you would
expect of imprecision to be on the order of magnitude (very roughly)
by 234.07, i.e., 1.8036e+10.
Hence, in rough terms, you’d expect x{200}, which represents im-
precision around n = 34, to drop by roughly 1010. [You can’t get
more precise than this rough estimate, unless you are willing to dig in
deeply to the roundoff/truncation errors that are specified in double
precision.]



4 JOEL FRIEDMAN

(4) (a) Consider for a sequence . . . , y−1, y0, y1, y2, . . ., consider the recurrence
relation:

yn+1 = yn ∀n ∈ Z
(i.e., for all integers n). For for any a ∈ R, what is the unique solution
to this recurrence that satisfies the condition y0 = a? Briefly justify
your answer.

(b) Consider another recurrence relation:

yn+2 = 2yn+1 − yn ∀n ∈ Z.

For any a, b ∈ R, what is the unique solution to this recurrence that
satisfies the condition y0 = a and y1 = a + b? Briefly justify your
answer.

(c) Consider another recurrence relation:

(1) yn+3 = 3yn+2 − 3yn+1 + yn ∀n ∈ Z.

Show that the following sequences satisfy this recurrence relation: yn =
1, ỹn = n, ŷn = n2.

(d) Show that for any C1, C2, C3 ∈ R, the sequence

yn = C1 + C2n+ C3n
2

satisfies (1) [you may use the previous part].
(e) If we define for each sequence

y = {yn}n∈Z = {. . . , y−1, y0, y1, y2, . . .}
a new sequence Dy (known as the “(forward) difference of y”) defined
by

(Dy)n = yn+1 − yn,
we can “apply D twice” to get D2y, meaning D(Dy), given by

D(Dy) = (Dy)n+1 − (Dy)n =
(
yn+2 − yn+1

)
−
(
yn+1 − yn

)
.

Simplify this formula, and then compute a similarly simplified formula
for D3y, meaning D(D2y). How do your formulas for relate to the
previous parts (a)–(c) of this problem?

(f) For any a, b ∈ R, what is the exact solution of (1) given the conditions
y0 = a, y1 = a+ b, y2 = a+ 2b?

(g) Run the following MATLAB code to test what happens numerically

in the previous part for a =
√

2 and b =
√

7:
clear

n = 1

sequence_length = 30 * n

x{1}= sqrt(2)

x{2}= sqrt(2) + sqrt(7)

x{3}= sqrt(2) + 2 * sqrt(7)

for i=4:sequence_length, x{i}=3*x{i-1} - 3*x{i-2}+x{i-3}; end

for i=1:30; should_be_zero{i} = x{i*n}-sqrt(2)-(i*n-1)*sqrt(7); end
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should_be_zero

and then run the entire code again (starting from the clear at the top)
with n = 10, n = 100, n = 1000, and n = 10000. Explain why the cell
array should be zero should be zero if MATLAB were computing in
“exact” (or “infinite precision”) arithmetic.
Roughly speaking, what do you think you are seeing numerically?

(h) Run the above code again for n = 10000 (i.e., 10,000), and at the
bottom add the lines

for i=1:20; rough_effect_of_error{i} = should_be_zero{i} / (i*n-1)^2; end

rough_effect_of_error

Then run all of the above code with n = 100000 (i.e. 100,000),
and n = 1000000 (i.e., 1,000,000). Is the description of the results

as C1 + C2n + C3n
2 with C1 =

√
2, C2 =

√
7, and C3 a very

small constant seem completely correct for n = 104? Is there any
trend to how the apparent C3 is behaving in the various entries of
rough effect of error? What about for n = 105? What about for
n = 106? [Your answers may or may not be the same for these three
values of n.]

Solution:

(a) This recurrence implies that y1 = y0 = a and a = y0 = y−1, and
similary yi = a for i = 2, 3, . . . and i = −2,−3, . . . (i.e., for all i).

(b) In class we remarked that the general solution is yn = C1 + C2n (see
the last two pages of notes for Feb 5); and hence for y0 = a we get
C1 = a, and y1 = a + b gives a + b = C1 + C2 = a + C2 and hence
C2 = b. Hence the general solution is yn = a+ nb.
[Alternatively you could check that y2 = 2y1− y0 = a+ 2b, y3 = 2y2−
y1 = a+3b, and guess that the general solution is yn = a+bn: to check
it you just have to see that y0 = a and y1 = a + b (as required), and
see that this function of yn satisfies the recurrence yn+2 = 2yn+1−yn.]

(c) For yn = 1: for all n ∈ Z,

yn+3 − 3yn+2 + 3yn+1 − yn = 1− 3 · 1 + 3 · 1− 1 = 0.

For ỹn = n: for all n ∈ Z,

ỹn+3 − 3ỹn+2 + 3ỹn+1 − ỹn = (n+ 3)− 3(n+ 2) + 3(n+ 1)− n = 0.

For ŷn = n2: for all n ∈ Z,

ŷn+3 − 3ŷn+2 + 3ŷn+1 − ŷn = (n+ 3)2 − 3(n+ 2)2 + 3(n+ 1)2 − n2

= (n2 + 6n+ 9)− 3(n2 + 4n+ 4) + 3(n2 + 2n+ 1)− n2 = 0.
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(d) If

yn = C1 + C2n+ C3n
2

then

yn+3 − 3yn+2 + 3yn+1 − yn

= C1

(
1−3·1+3·1−1

)
+C2

(
(n+3)−3(n+2)+3(n+1)−n

)
+C3

(
(n+3)2−3(n+2)2+3(n+1)2−n2

)

= C1 · 0 + C2 · 0 + C3 · 0 = 0

by the calculations in part (b).

[Alternatively, you can say that the equation

yn+3 − 3yn+2 + 3yn+1 − yn = 0

is a linear equation, in that for any two sequences {un}n∈Z and {vn}n∈Z
satisfy then equation, then for any reals α, β, the sequence

xn = αun + βvn

satisfies the equation, since

xn+3 − 3xn+2 + 3xn+1 − xn

= α
(
un+3−3un+2 +3un+1−un

)
+β

(
vn+3−3vn+2 +3vn+1−vn

)
= α ·0+β ·0 = 0.

It follows that any linear combination (sometimes called superposition)
of solutions to this equation yields another solution. So since 1, n, n2

are solutions, so is C1 + C2n+ C3n
2.]

(e)

D2y =
(
yn+2 − yn+1

)
−

(
yn+1 − yn

)
= yn+2 − 2yn+1 − yn,

and

D3y = D(D2y) = D
(
yn+2 − 2yn+1 − yn

)
=

(
yn+3 − 2yn+2 − yn+1

)
−
(
yn+2 − 2yn+1 − yn

)
= yn+3 − 3yn+2 + 3yn+1 − yn

Parts (a)–(c) study the equations Dy = 0, D2y = 0, and D3y = 0.
(f) For yn = C1 + C2n + C3n

2, the equation y0 = a implies C1 = a, and
so yn = a + C2n + C3n

2. The equations y1 = a + b and y2 = a + 2b
then imply

a+ C2 + C3 = a+ b, a+ 2C2 + 4C3 = a+ 2b,

so

C2 + C3 = b, 2C2 + 4C3 = 2b,

and so C3 = 0 and C2 = b. Hence the exact solution is yn = a+ bn.
[Alternatively, you can notice that from part (b), yn = a+ bn fits the
“initial” conditions y0 = a, y1 = a+b, and y2 = a+2b, and that a+bn
(being of the form C1 + C2n+ C3n

2) satisfies (1).]
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(g) In exact arithmetic, x{j} = a + (j − 1)b, with a =
√

2 and b =√
7 (don’t forget the −1 in j − 1, which is there since the cell array

x begins in x{1}). Hence should be zero is 0 in exact arithmetic.
Numerically you are seeing the effects of finite precision, and likely
you are picking up a C3n

2 term where C3 is small but nonzero. [This
is the analog of what we’ve seen in three-term recurrences in earlier
homework; however, as the next part shows, this is only roughly true.]

(h) The rough effect of error is trying to find the value of C3 if one
models x{j} as a+ (j − 1)b+ (j − 1)2C3.
The n = 10, 000 experiment gives C3 ranging as small as 1.4681e-13
and -1.6657e-13 and as large as 9.5509e-12, but the C3 value is not
constant and has no particular pattern; since the e-13 values are for
j = n− 1, 2n− 1, . . . , 6n− 1 and the e-12 values are for larger j, you
could also say that C3 may be somewhat increasing in j (although
there is no clear pattern).
The n = 100, 000 experiment shows a clearer pattern of increase in
C3, in that C3 mostly increases for every additional n steps (starting
at 6.6761e-12 and ending around 4.8926e-11) although C3 does not
increase at every step (e.g., at j = n − 1 to 2n − 1, and it decreases
between 6n− 1 to 9n− 1).
The n = 1, 000, 000 experiment shows a strict increase in C3 until the
very last step, from j = 19n − 1 to 20n − 1, although before 19n − 1
some of the increases are quite small. [The first step is from 2.3017e-11
(at n − 1) to 4.8926e-11 (at 2n − 1), but only reaches 8.1274e-10 at
19n− 1 and drops to 8.0879e-10 at 20n− 1.]
From n ranging from 104 to 105 and 106, the “observed C3” is getting
generally larger, but there is no simple pattern (e.g., strict increase)
in the C3. The model of this sequence by a + (j − 1)b + (j − 1)2C3

is much more subtle than the models of C1r
n
1 + C2r

n
2 for three-term

recurrences in earlier homework.
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