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(1) Let

A(n) =

[
1 1
1 0

]n
(a) Consider the following MATLAB code for computing some values of

A(n):

A = [ 1 , 1 ; 1 , 0 ]

for n=1:8, n, A^n , end

Write down an exact formula for An based on what you see.
(b) What does the following MATLAB code do?

A = [ 1 , 1 ; 1 , 0 ]

for n=1:8, n, A=A^2 , end

(c) Show that the equation xn+2 = xn+1+xn is equivalent to the equation[
xn+2

xn+1

]
= A

[
xn+1

xn

]
(d) Describe the exact value of

Anv, where v =

[(
1−
√

5
)
/2

1

]
(e) Describe the MATLAB computation of the sequence Anv with the

following code:

A = [ 1 , 1 ; 1 , 0 ]

v = [ (1-sqrt(5))/2 ; 1 ]

for n=1:80, n, v = A*v , end

How does the output behave for various values of n?
(f) Describe the output of the following MATLAB computation, and ex-

plain (roughly) why you see these results.
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A = [ 1 , 1 ; 1 , 0 ]

v = [ (1-sqrt(5))/2 ; 1 ]

for n=1:80, v = A*v ; v_ratio(n) = v(1)/v(2); end

v_ratio

Solution:

(a) You should see Fibonacci numbers in these powers and observe the
pattern

A(n) =

[
1 1
1 0

]n
=

[
Fn+1 Fn

Fn Fn−1,

]
where F0 = 0, F1 = F2 = 1, etc., are the Fibonacci numbers as
described in the handout “Recurrence Relations and Finite Precision.”

(b) This code repeatedly squares A, printing out n and A2n for n =
1, . . . , 8.

(c) [
1 1
1 0

] [
xn+1

xn

]
=

[
xn+1 + xn

xn+1

]
Hence

A

[
xn+1

xn

] [
xn+2

xn+1

]
⇐⇒

[
xn+1 + xn

xn+1

]
=

[
xn+2

xn+1

]
⇐⇒ xn+2 = xn+1 + xn

(d) Since v = (r, 1) where r is the Golden Ratio Conjugate, we have
Anv = (rn+1, rn) (see class notes 01 10 or Section 4 of “Recurrence
Relations and Finite Precision”). [Alternatively, you could prove this
by verify that Av = rv, and hence A scales v by r (i.e., v, r are an
eigenvector and eigenvalue pair), and hence Anv = rnv.]

(e) For small n, v looks like rnv (where r is the Golden Ratio Conjugate);
for n between roughly 35 and 45 the ratio of v1/v2 changes from r to
the Golden Ratio, where it stays for larger n (i.e., n ≥ 45).

(f) Roughly speaking (both in the part and the previous one), what you
are seeing are consecutive solutions to the Fibonacci recurrence,

(1) xn = C1

(
1 +
√

5

2

)n

+ C2

(
1−
√

5

2

)n

where C2 = 1, but instead of the C1 = 0 you are seeing C1 a very
small, non-zero quantity.
This code prints out the first component of the numerical value of
vn = Anv, numerically computed via the recurrence vn = Avn−1. By
examining this ratio it is easier to see when the numerical solution
transitions from the C2 term in (1) is dominant to when the C1 term
is.
To the five digits of precision that MATLAB reports by default, the
change from -0.6180 to 1.6180, i.e., from the Golden Ratio Conjugate
to the Golden Ratio, occurs from n = 28 to n = 52 [and the most
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dramatic changes are more between n = 31 or n = 36 to n = 42 or
n = 46]. Note: there is no single correct answer, because we have
not precisely defined “the range of transition.”
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(2) Set x0 = 1, x1 = 1/8, and set

vn =

[
9/8 −1/8
1 0

]n [
x1

x0

]
(a) What is the value of vn in exact arithmetic?
(b) What happens with the MATLAB floating point computation of vn

below?

A = [ 9/8 , -1/8 ; 1 , 0 ]

v = [ 1/8 ; 1 ]

for n=1:400, n, v = A*v , end

Solution:

(a) Reasoning as with the Fibonacci recurrence (Problem 1(c) above), we
have that the 2× 2 matrix equation is equivalent to vn = (xn+1, xn),
where the sequence xn, n ∈ Z is given by the recurrence

xn+2 = (9/8)xn+1 − (1/8)xn.

The solution to this recurrence is given as

xn = C1r
n
1 + C2r

n
2

where r1, r2 are the roots to

r2 = (9/8)r − (1/8),

i.e., r = 1, 1/8. It follows that if x0 = 1 and x1 = 1/8, then the general
solution in exact arithmetic is xn = (1/8)n, and hence

vn =

[
xn+1

xn

]
=

[
(1/8)n+1

(1/8)n.

]
[As in Problem 1, you could reach the same conclusion by noting that
(1/8, 1) is an eigenvector of the 2 × 2 matrix in this problem, with
eigenvalue 1/8.]

(b) Because you are dividing by 8 in double precision, which is done
base 2, the calculation has no roundoff/truncation error, and at
n = 1, 2, . . . , 357 you get what seems like the exact answer, and surely
where the ratio of the first to the second component is 1/8, down to
9.9e-323 times (0.0500, 0.4000). for n = 358 the first component is
reported as 0, and for n ≥ 359, vn is reported as (0, 0).

The following are additional remarks not required on the
homework:

I am a bit suspicious of the n = 357 answer because of the 00’s there,
and since these reported numbers are very close to the limits of double
precision’s smallest non-zero numbers. . .; I certainly believe up to n =
350, and possibly a few more, since the smallest non-zero positive
number in double-precision is 2−1074, or roughly 4.94× 10−324.
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The real story is a bit more involved: Double precision usually
writes numbers in base 2 scientific notation as

s × 1.b1b2 . . . b52 × 2m

where s = ±, b1, . . . , b52 ∈ {0, 1} are bits (binary digits), and m =
−1022, . . . , 1023; such a number is called a normal number. The 52
bits b1, . . . , b52 gives you “53 bits of precision” (at least in the way
we speak of 3.45 having “3 digits of precision”) for normal numbers.
There are 2046 possible values of m, from −1022 to 1023, which takes
11 bits (binary digits) and leaves 211 − 2046 = 2 special values:

(i) one of these two special values (of the 2048 possible values) is
for values like Inf, -Inf, and Nan (this special value has a sign,
s, plus 52 bits b1, . . . , b52 to describe the particular special value
you mean);

(ii) the other special value is for subnormal numbers, where when
double precision understands that you mean the number

± 0.b1b2 . . . b52 × 2−1022.

In this way you can express numbers as small as

0. 000 . . . 000︸ ︷︷ ︸
51 0’s

1 × 2−1022,

as a subnormal numbers in double precision, which is 2−52 ×
2−1022 = 2−1074; of course, for this number you only have one
bit (binary digit) of precision; you can only count on a full 53-bits
of precision if your number is 2−1022 or larger, and the smaller
a subnormal number is, the more precision you will lose.

The (current) Wikipedia article on “Double-precision floating-point
format” has a good explanation of this with examples; for example,
the largest number in double precision is

1. 1111 . . . 1111︸ ︷︷ ︸
52 1’s

× 21023 ≈ 21024,

and this is normal number—the kind you should be working with—
since you get a full 53 bits of precision, because normal numbers are
written as 1. followed by 52 more bits (binary digits). The smallest
positive normal number is 2−1022.
Since we are working with powers of 1/8, each power of 8 looks like

1. 000 . . . 000︸ ︷︷ ︸
52 0’s

× 2m

for −1022 ≤ m ≤ 1023, which are normal numbers, but for m ≤ −1023
these powers of 2 (or 8) are the special subnormal numbers that look
like

0. 000 . . . 000︸ ︷︷ ︸
some 0’s

1 000 . . . 000︸ ︷︷ ︸
more 0’s

× 2−1022
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So in binary arithmetic, the smallest positive number is 2−1074 =
8−358, so I’ll (probably) trust the numerical computation as exact until
the division by 8 in the recurrence dips below 8−358.
Note that textbook [A&G] does not mention subnormal num-
bers. Similarly, if you type realmin into MATLAB, it will return
2.2251e-308, since you can’t count on 53 bits of precision for smaller
positive numbers, i.e., subnormal numbers (and you should realize this
caveat in working with smaller positive numbers). However, MATLAB
will report subnormal numbers without telling you this, which explains
why you can see numbers as small as 2−1074 ≈ 4.94× 10−324.
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(3) Set x0 = 1, x1 = 1/7, and set

vn =

[
8/7 −1/7
1 0

]n [
x1

x0

]
(a) What is the value of vn in exact arithmetic?
(b) Explain what you see in the MATLAB floating point computation of

vn below, and (roughly) why you see it.

A = [ 8/7 , -1/7 ; 1 , 0 ]

v = [ 1/7 ; 1 ]

for n=1:40, n, v = A*v , end

Solution:

(a) As before (in the previous problems), this 2 × 2 system is equivalent
to solving the recurrence xn+2 = (8/7)xn+1 − (1/7)xn. So we solve
r2 = (8/7)r − (1/7) to get r = 1, 1/7. It follows that for either value
of r, we have [

8/7 −1/7
1 0

]n [
r
1

]
=

[
rn+1

rn

]
(b) The general solution to[

8/7 −1/7
1 0

]n [
x1

x0

]
,

for general x0, x1 is of the form

(2) C1

[
1
1

]
+ C2

[
(1/7)n+1

(1/7)n,

]
since the vectors this generates is equivalent to producing (xn+1, xn)
where the sequence xn satisfies the recurrence xn+2 = (8/7)xn+1 −
(1/7)xn. Although the solution in exact arithmetic is C2 = 1 and
C1 = 0 for (x1, x0) = (1/7, 1), due to roundoff/truncation the observed
solution will be C2 = 1 but C1 very close to 0 (but not exactly 0),
because of the divisions by 7 in the base 2 format of double precision.
Specifically, for small values of n we observe only the C2 term in (2),
but for large n ≥ 26 numerically observe a solution in (2) where only
the C1 term dominates, with C1 roughly 0.5480e-17. The additional
line of code

v = [ 1/7 ; 1 ]

for n=1:40, v = A*v ; v_ratio(n) = v(1)/v(2); end

v_ratio

makes it easier to identify the transition from the ratio of 1/7 to 1, which
takes place from n = 15 to n = 25 as reported by MATLAB (to five places
of precision), with more dramatic changes around n = 18 to n = 21. The
relevant transition values are:
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Columns 15 through 21

0.1428 0.1427 0.1418 0.1351 0.0857 -0.5231 1.4159

Columns 22 through 28

1.0420 1.0058 1.0008 1.0001 1.0000 1.0000 1.0000
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