CPSC 303 Homework 1 Solutions

Joel Friedman

February 2, 2020

1. Consider the following experiment: set $x_0 = 1$, $x_1 = 1/2$, and define x_2, x_3, \ldots by the formula

$$x_{n+2} = (3/2)x_{n+1} - (1/2)x_n.$$

Hence in exact arithmetic, $x_n = (1/2)^n$. Perform this experiment in MATLAB, to numerically compute $x_2, x_3, \ldots, x_{1200}$. At one point does this sequence cycle (repeat a pattern)? What is the pattern and what is its period?

[Hint: Look at Section 5.4 of the handout; you could cut and paste the code from there (you may need to do this line by line). If your numerical experiment is like mine, for x_n with n roughly 1075 you will see a repeating pattern

{[4.9407e-324]}	{[9.8813e-324]}	{[1.4822e-323]}	{[1.4822e-323]}
{[9.8813e-324]}	{[4.9407e-324]}	{[4.9407e-324]}	{[9.8813e-324]}
{[1.4822e-323]}	{[1.4822e-323]}	{[9.8813e-324]}	{[4.9407e-324]}

and so the period of this repeating pattern is 6.]

Solution:

MATLAB appears to computes the sequence x_n correctly for n = 0, ..., 1074, with x_n for n = 1071 to n = 1074 reported as

 $\{[3.9525e-323]\}$ $\{[1.9763e-323]\}$ $\{[9.8813e-324]\}$ $\{[4.9407e-324]\}$

until the above pattern appears at $n = 1075, \ldots, 1086$; the period of the cycle is 6 [meaning that $x_{n+6} = x_n$ for $n \ge 1074$].

The following MATLAB code (adapted from Section 5.4 of the handout) shows this pattern:

```
clear

x{1} = 1;

x{2} = 1/2;

for i=3:1100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x
```

[The vector x begins with $x\{1\}$ since MATLAB doesn't allow the index 0 for (an array or) a cell array.]

The following is an additional step not required on the homework: To make sure that x_{n+1}/x_n is computed as 1/2 for $n \le 1073$, you can check by running the following code after you have run the above code:

for i=2:1099, y{i}=x{i+1}/x{i}; end y

which gives 0.5000 until i = 1075 (corresponding to x_{n+1}/x_n with n = 1074, at which point you get the sequence of period six:

 $\{[1]\}$ $\{[2]\}$ $\{[1.5000]\}$ $\{[1]\}$ $\{[0.6667]\}$ $\{[0.5000]\}$

[It should not surprise you that the product of these six numbers is 1, since the pattern of x_n repeats every six iterations.]

2. Same question as (1), except with $x_0 = 1$, $x_1 = 1/3$, and

$$x_{n+2} = (4/3)x_{n+1} - (1/3)x_n$$

for $n = 0, 1, 2, \ldots$

Solution:

The general solution of

$$x_{n+2} = (4/3)x_{n+1} - (1/3)x_n$$

is

$$C_1r_1^n + C_2r_2^n$$

where r_1, r_2 are the two solutions to

$$r^2 = (4/3)r - (1/3),$$

i.e., r = 1, 1/3. Hence the exact solution with $x_0 = 1$ and $x_1 = 1/3$ is $x_n = (1/3)^n$. The numerical experiment is very different:

```
clear

x{1} = 1;

x{2} = 1/3;

for i=3:100, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

x
```

Imprecision gets very clear around $x\{i\}$ with $i = 35, \ldots, 38$

```
\{[5.8224e-17]\} \{[1.8249e-17]\} \{[4.9239e-18]\} \{[4.8228e-19]\}
```

(note the factor of 10 between the last two terms). Then $x\{i\}$ remains fixed (to within the five digits reported) at -1.7385e-18 around $i \ge 48$.

The following is an additional step not required on the homework: What you are seeing is the finite precision error in dividing by 3 in the base-2 double precision computation. Roughly speaking, this looks like the solution

$$C_1 + C_2(1/3)^n$$

with $C_2 = 1$ and C_1 roughly -1.7385e-18; the truth is a bit more complicated, because the finite precision errors are more complicated and compound at each step. However, this model is still pretty close, as the following experiments show: to be safe, we compute x_n numerically until n = 200 (i.e., to $x\{201\}$); we set $C_1 = 1$ and $C_2 = x\{201\}$, so that $C_1 + C_2(1/3)^n$ should match $x_n = x\{n+1\}$ for n = 0 and n = 200. We now compute $y_n = C_1 + C_2(1/3)^n$, and see how close y_n and x_n are, by setting $r_n = y_n/x_n$ (r for "ratio") and computing $d_n = 1 - r_n$ (d for "difference"):

```
clear

x{1} = 1;

x{2} = 1/3;

for i=3:201, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

C1 = x{200}

for i=0:200, y{i+1} = C1 + (1/3)^{i}; end

for i=0:200, r{i+1}=y{i+1}/x{i+1}; end

for i=0:200, d{i+1} = 1 - r{i+1}; end

r
```

```
We see that the model is extremely close: the sequence d\{i\} seems lagest at d\{38\} reported as 7.2164e-15, and is reported as 0 for d\{i\} with i = 1, 2, 3 and i \ge 69.
```

3. Same questions as (1) and (2), except with $x_0 = 1$, $x_1 = r$, and

$$x_{n+2} = (1+r)x_{n+1} - (r)x_n$$

for n = 0, 1, 2, ..., for the value r = 1/4.

Solution:

The exact solution is obtained by solving $z^2 = (1+r)z - r$ which has roots 1, r; therefore the general solution is

$$x_n = C_1 + C_2 r^n$$

and the special case $x_0 = 1$ and $x_1 = r$ is therefore $x_n = r^n$.

In the case of r = 1/4 you get the exact answer (since double precision works in base 2) until x_n gets to the limit of indistinguishability from 0 (in the exponent of the scientific notation base 2):

clear $x{1} = 1;$ $x{2} = 1/4;$ for i=3:600, $x{i} = (5/4)*x{i-1}-(1/4)*x{i-2};$ end x

which has $x\{i\}$ equal 4.9407e-324 for i = 538, and 0 for $i \ge 539$.

4. Same question as (3) for r = 1/5.

Solution:

The formulas in Question 3 still hold, i.e.,

$$x_n = C_1 + C_2 r^n$$

for the general solution, and the special case $x_n = r^n$ when $x_0 = 1$ and $x_1 = r$ hold; this time r = 1/5. We then run the experiment:

```
clear

x{1} = 1;

x{2} = 1/5;

for i=3:40, x{i} = (6/5)*x{i-1}-(1/5)*x{i-2}; end

x
```

which (because of the division by 5, similar to Problem 2 with division by 3 in the base 2 double precision) eventually converges to -4.0416e-17, at roughly $x{32}$, for similar reasons as in Problem 2.

5. (a) In MATLAB, perform the numerical experiment $x_0 = 1$, $x_1 = 1/3$, and

$$x_{n+2} = (10/3)x_{n+1} - x_n$$

(for n = 0, 1, 2, ...). Describe the results (e.g., what happens for some interations the beginning, at the end, and somewhere where a transition occurs).

- (b) What is the general solution to the recurrence $x_{n+2} = (10/3)x_{n+1} x_n$?
- (c) Explain why this general solution produces a numerical pattern like the one you see.

Solution:

(a) Examining the results of

```
clear
x{1} = 1;
x{2} = 1/3;
for i=3:800, x{i} = (10/3)*x{i-1}-x{i-2}; end
x
```

we see that the sequence begins to decay like $(1/3)^n$, then makes a sort of "transition"

Columns 19 through 22

 $\{[5.9170e-09]\}$ $\{[1.0868e-08]\}$ $\{[3.0309e-08]\}$ $\{[9.0162e-08]\}$

Columns 23 through 26

```
{[2.7023e-07]} {[8.1061e-07]} {[2.4318e-06]} {[7.2954e-06]}
whereupon it increases by factors of 3 until it hits the upper limit of double precision:
Columns 681 through 685
```

{[2.3849e+307]} {[7.1547e+307]} {[Inf]} {[Inf]} {[NaN]} The transition that $x\{n+1\} = x_n$ makes from decreasing by 1/3 to increasing by 3

occurs around $n + 1 = 15, \ldots, 22$, as we can see by examining:

Columns 15 through 18

 $\{[2.0912e-07]\}$ $\{[6.9815e-08]\}$ $\{[2.3601e-08]\}$ $\{[8.8555e-09]\}$

Columns 19 through 22

{[5.9170e-09]} {[1.0868e-08]} {[3.0309e-08]} {[9.0162e-08]}

(b) The general solution to $x_{n+2} = (10/3)x_{n+1} - x_n$ is given by solving $r^2 = (10/3)r - 1$, whose solutions are r = 3, 1/3 and hence the general solution is

$$C_1 3^n + C_2 (1/3)^n$$
.

- (c) The special case $x_0 = 1$, $x_1 = 1/3$, is therefore $(C_1 = 0 \text{ and } C_2 = 1 \text{ and}) r^n = (1/3)^n$.
- (d) Because of the division by 3, the numerical experiment in double precision gives a solution that looks more like $C_2 = 1$ and C_1 very small but nonzero. Hence for small n the x_n is roughly $(1/3)^n$, where $C_2(1/3)^n$ is the dominant term, while for large n the dominant term $C_1 3^n$, which is what x_n looks like.

For large n, x_n takes on the value of Inf (intuitively meaning $+\infty$) twice, at this point the next value is $(10/3)(+\infty) - (+\infty)$, i.e., Inf minus Inf, which is NaN (not a number).

The following is an additional step not required on the homework: It is interesting to try to model the numerical computation of x_n by finding C_1 (with $C_2 = 1$, since this is what you observe at for small n) that match the computation.

Since $x\{682\}$ is 7.1547e+307, we can solve

$$x{682} = x_{681} = C_1 3^{681} = 7.1547 e + 307$$

to solve for C_1 . In MATLAB (and double precision), $3^{681} = Inf$, so in MATLAB we need to choose a value of *n* slightly smaller than 681 so that 3^{681} is still finite (in double precision). We have $3^{600} = 1.8739e + 286$, so we solve for C_1 in

$$C_{1}3^{600} = x_{600} = x\{681\} = 2.3849e + 307.$$

Hence additional MATLAB code

C1 = x{601}/3^600 for i=0:700; y{i+1} = C1 * 3^i + (1/3)^i; end; y for i=0:700; z{i+1} = x{i+1}/y{i+1}; end; z

sets C1 to be 8.6103e-18, and then we see that the cell array z is 1 everywhere (!) until 3^n becomes Inf, and so y is a remarkably good approximation to x (or you could just compare x, y value-by-value.

Note that the value of C1 is of a similar order of magnitude (i.e., -18 in this case) as the constants C_1 in the numerical experiments in the previous problems.

6. Same question as the previous question, for $x_0 = 1$, $x_1 = -1/3$, and the recurrence

$$x_{n+2} = (8/3)x_{n+1} + x_n.$$

In addition:

(a) Type the following calculations into MATLAB

(-4)^100001 (-4)^100000 (-4)^100001 + (-4)^100000

Explain (in 3-10 words) what the terms -Inf, Inf mean, and explain (in 5-15 words) why when you add -Inf and Inf you should get NaN (not a number).

(b) Why does the sequence in Problem (5) end in NaN repeating, while the one in Problem (6) ends in Inf (or possibly -Inf) repeating?

Solution:

There are two main differences with Question 5 and Question 6: first, the solution to $r^2 = (8/3)r + 1$ is r = 3, -1/3, so numerically we see something like $(-1/3)^n$ for small n and, as in Problem 5, $C_1 3^n$, for large n. And second, for very large n the numerical values of x_n remain Inf, since the recurrence is always adding two (positive) multiples of Inf (i.e., positive infinity), which remains Inf.

The code to run is

```
clear

x{1} = 1;

x{2} = -1/3;

for i=3:800, x{i} = (8/3)*x{i-1}+x{i-2}; end

x
```

The transition occurs around i = 20:

```
Columns 14 through 17

{[-6.2722e-07]} {[2.0910e-07]} {[-6.9628e-08]} {[2.3421e-08]}

Columns 18 through 21

{[-7.1726e-09]} {[4.2939e-09]} {[4.2779e-09]} {[1.5702e-08]}

Columns 22 through 25

{[4.6149e-08]} {[1.3877e-07]} {[4.1619e-07]} {[1.2486e-06]}
```

The additional parts of Question 6 are meant to emphasize the difference Inf, -Inf, and NaN and arithmetic operations on these values.

- (a) [The results are -Inf, Inf, and NaN.] -Inf means minus infinity; Inf means positive infinity; since ±Inf refer to anything beyond double precision, their sum can't be determined, and therefore called NaN.
- (b) In Problem 6 we add positive infinity with a finite value, and then repeatedly add two positive infinities, producing the repeating values of Inf, whereas in Problem 5 we subtract two positive infinities, producing NaN, and then all future iterations become NaN's as well.

The following is an additional step not required on the homework:

To see when numbers are beyond double precision, you can run the MATLAB code:

for i=1:350; [10ⁱ, -10ⁱ] , end

which shows that $\pm 10^{308}$ are the first powers of 10 designated as $\pm \text{Inf.}$ (Alternatively, you could look at the top of page 31, Section 2.4, of [A&G].)