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1. Consider the following experiment: set x0 = 1, x1 = 1/2, and define x2, x3, . . . by the formula

xn+2 = (3/2)xn+1 − (1/2)xn.

Hence in exact arithmetic, xn = (1/2)n. Perform this experiment in MATLAB, to numerically
compute x2, x3, . . . , x1200. At one point does this sequence cycle (repeat a pattern)? What is
the pattern and what is its period?

[Hint: Look at Section 5.4 of the handout; you could cut and paste the code from there (you
may need to do this line by line). If your numerical experiment is like mine, for xn with n
roughly 1075 you will see a repeating pattern

{[4.9407e-324]} {[9.8813e-324]} {[1.4822e-323]} {[1.4822e-323]}

{[9.8813e-324]} {[4.9407e-324]} {[4.9407e-324]} {[9.8813e-324]}

{[1.4822e-323]} {[1.4822e-323]} {[9.8813e-324]} {[4.9407e-324]}

and so the period of this repeating pattern is 6.]

Solution:

MATLAB appears to computes the sequence xn correctly for n = 0, . . . , 1074, with xn for
n = 1071 to n = 1074 reported as

{[3.9525e-323]} {[1.9763e-323]} {[9.8813e-324]} {[4.9407e-324]}

until the above pattern appears at n = 1075, . . . , 1086; the period of the cycle is 6 [meaning
that xn+6 = xn for n ≥ 1074].

The following MATLAB code (adapted from Section 5.4 of the handout) shows this pattern:

clear

x{1} = 1;

x{2} = 1/2;

for i=3:1100, x{i} = (3/2)*x{i-1}-(1/2)*x{i-2}; end

x
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[The vector x begins with x{1} since MATLAB doesn’t allow the index 0 for (an array or) a
cell array.]

The following is an additional step not required on the homework: To make sure
that xn+1/xn is computed as 1/2 for n ≤ 1073, you can check by running the following code
after you have run the above code:

for i=2:1099, y{i}=x{i+1}/x{i}; end

y

which gives 0.5000 until i = 1075 (corresponding to xn+1/xn with n = 1074, at which point
you get the sequence of period six:

{[1]} {[2]} {[1.5000]} {[1]} {[0.6667]} {[0.5000]}

[It should not surprise you that the product of these six numbers is 1, since the pattern of xn
repeats every six iterations.]
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2. Same question as (1), except with x0 = 1, x1 = 1/3, and

xn+2 = (4/3)xn+1 − (1/3)xn

for n = 0, 1, 2, . . .

Solution:

The general solution of
xn+2 = (4/3)xn+1 − (1/3)xn

is
C1r

n
1 + C2r

n
2

where r1, r2 are the two solutions to

r2 = (4/3)r − (1/3),

i.e., r = 1, 1/3. Hence the exact solution with x0 = 1 and x1 = 1/3 is xn = (1/3)n.

The numerical experiment is very different:

clear

x{1} = 1;

x{2} = 1/3;

for i=3:100, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

x

Imprecision gets very clear around x{i} with i = 35, . . . , 38

{[5.8224e-17]} {[1.8249e-17]} {[4.9239e-18]} {[4.8228e-19]}

(note the factor of 10 between the last two terms). Then x{i} remains fixed (to within the
five digits reported) at -1.7385e-18 around i ≥ 48.

The following is an additional step not required on the homework: What you are
seeing is the finite precision error in dividing by 3 in the base-2 double precision computation.
Roughly speaking, this looks like the solution

C1 + C2(1/3)n

with C2 = 1 and C1 roughly -1.7385e-18; the truth is a bit more complicated, because the
finite precision errors are more complicated and compound at each step. However, this model
is still pretty close, as the following experiments show: to be safe, we compute xn numerically
until n = 200 (i.e., to x{201}); we set C1 = 1 and C2 = x{201}, so that C1 +C2(1/3)n should
match xn = x{n + 1} for n = 0 and n = 200. We now compute yn = C1 + C2(1/3)n, and see
how close yn and xn are, by setting rn = yn/xn (r for “ratio”) and computing dn = 1− rn (d
for “difference”):
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clear

x{1} = 1;

x{2} = 1/3;

for i=3:201, x{i} = (4/3)*x{i-1}-(1/3)*x{i-2}; end

C1 = x{200}

for i=0:200, y{i+1} = C1 + (1/3)^i; end

for i=0:200, r{i+1}=y{i+1}/x{i+1}; end

for i=0:200, d{i+1} = 1 - r{i+1}; end

r

We see that the model is extremely close: the sequence d{i} seems lagest at d{38} reported
as 7.2164e-15, and is reported as 0 for d{i} with i = 1, 2, 3 and i ≥ 69.
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3. Same questions as (1) and (2), except with x0 = 1, x1 = r, and

xn+2 = (1 + r)xn+1 − (r)xn

for n = 0, 1, 2, . . ., for the value r = 1/4.

Solution:

The exact solution is obtained by solving z2 = (1 + r)z− r which has roots 1, r; therefore the
general solution is

xn = C1 + C2r
n

and the special case x0 = 1 and x1 = r is therefore xn = rn.

In the case of r = 1/4 you get the exact answer (since double precision works in base 2) until
xn gets to the limit of indistinguishability from 0 (in the exponent of the scientific notation
base 2):

clear

x{1} = 1;

x{2} = 1/4;

for i=3:600, x{i} = (5/4)*x{i-1}-(1/4)*x{i-2}; end

x

which has x{i} equal 4.9407e-324 for i = 538, and 0 for i ≥ 539.
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4. Same question as (3) for r = 1/5.

Solution:

The formulas in Question 3 still hold, i.e.,

xn = C1 + C2r
n

for the general solution, and the special case xn = rn when x0 = 1 and x1 = r hold; this time
r = 1/5. We then run the experiment:

clear

x{1} = 1;

x{2} = 1/5;

for i=3:40, x{i} = (6/5)*x{i-1}-(1/5)*x{i-2}; end

x

which (because of the division by 5, similar to Problem 2 with division by 3 in the base 2
double precision) eventually converges to -4.0416e-17, at roughly x{32}, for similar reasons
as in Problem 2.
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5. (a) In MATLAB, perform the numerical experiment x0 = 1, x1 = 1/3, and

xn+2 = (10/3)xn+1 − xn

(for n = 0, 1, 2, . . .). Describe the results (e.g., what happens for some interations the
beginning, at the end, and somewhere where a transition occurs).

(b) What is the general solution to the recurrence xn+2 = (10/3)xn+1 − xn?

(c) Explain why this general solution produces a numerical pattern like the one you see.

Solution:

(a) Examining the results of

clear

x{1} = 1;

x{2} = 1/3;

for i=3:800, x{i} = (10/3)*x{i-1}-x{i-2}; end

x

we see that the sequence begins to decay like (1/3)n, then makes a sort of “transition”

Columns 19 through 22

{[5.9170e-09]} {[1.0868e-08]} {[3.0309e-08]} {[9.0162e-08]}

Columns 23 through 26

{[2.7023e-07]} {[8.1061e-07]} {[2.4318e-06]} {[7.2954e-06]}

whereupon it increases by factors of 3 until it hits the upper limit of double precision:

Columns 681 through 685

{[2.3849e+307]} {[7.1547e+307]} {[Inf]} {[Inf]} {[NaN]}

The transition that x{n + 1} = xn makes from decreasing by 1/3 to increasing by 3
occurs around n + 1 = 15, . . . , 22, as we can see by examining:

Columns 15 through 18

{[2.0912e-07]} {[6.9815e-08]} {[2.3601e-08]} {[8.8555e-09]}

Columns 19 through 22

{[5.9170e-09]} {[1.0868e-08]} {[3.0309e-08]} {[9.0162e-08]}

(b) The general solution to xn+2 = (10/3)xn+1 − xn is given by solving r2 = (10/3)r − 1,
whose solutions are r = 3, 1/3 and hence the general solution is

C13
n + C2(1/3)n.

7



CPSC 303 Homework 1 Solutions

(c) The special case x0 = 1, x1 = 1/3, is therefore (C1 = 0 and C2 = 1 and) rn = (1/3)n.

(d) Because of the division by 3, the numerical experiment in double precision gives a solution
that looks more like C2 = 1 and C1 very small but nonzero. Hence for small n the xn
is roughly (1/3)n, where C2(1/3)n is the dominant term, while for large n the dominant
term C13

n, which is what xn looks like.

For large n, xn takes on the value of Inf (intuitively meaning +∞) twice, at this point
the next value is (10/3)(+∞)− (+∞), i.e., Inf minus Inf, which is NaN (not a number).

The following is an additional step not required on the homework: It is interesting
to try to model the numerical computation of xn by finding C1 (with C2 = 1, since this is
what you observe at for small n) that match the computation.

Since x{682} is 7.1547e+307, we can solve

x{682} = x681 = C13
681 = 7.1547e + 307

to solve for C1. In MATLAB (and double precision), 3681 = Inf, so in MATLAB we need to
choose a value of n slightly smaller than 681 so that 3681 is still finite (in double precision).
We have 3600 = 1.8739e + 286, so we solve for C1 in

C13
600 = x600 = x{681} = 2.3849e + 307.

Hence additional MATLAB code

C1 = x{601}/3^600

for i=0:700; y{i+1} = C1 * 3^i + (1/3)^i; end;

y

for i=0:700; z{i+1} = x{i+1}/y{i+1}; end;

z

sets C1 to be 8.6103e-18, and then we see that the cell array z is 1 everywhere (!) until 3n

becomes Inf, and so y is a remarkably good approximation to x (or you could just compare
x, y value-by-value.

Note that the value of C1 is of a similar order of magnitude (i.e., -18 in this case) as the
constants C1 in the numerical experiments in the previous problems.
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6. Same question as the previous question, for x0 = 1, x1 = −1/3, and the recurrence

xn+2 = (8/3)xn+1 + xn.

In addition:

(a) Type the following calculations into MATLAB

(-4)^100001

(-4)^100000

(-4)^100001 + (-4)^100000

Explain (in 3-10 words) what the terms -Inf, Inf mean, and explain (in 5-15 words) why
when you add -Inf and Inf you should get NaN (not a number).

(b) Why does the sequence in Problem (5) end in NaN repeating, while the one in Prob-
lem (6) ends in Inf (or possibly -Inf) repeating?

Solution:

There are two main differences with Question 5 and Question 6: first, the solution to r2 =
(8/3)r + 1 is r = 3,−1/3, so numerically we see something like (−1/3)n for small n and,
as in Problem 5, C13

n, for large n. And second, for very large n the numerical values of
xn remain Inf, since the recurrence is always adding two (positive) multiples of Inf (i.e.,
positive infinity), which remains Inf.

The code to run is

clear

x{1} = 1;

x{2} = -1/3;

for i=3:800, x{i} = (8/3)*x{i-1}+x{i-2}; end

x

The transition occurs around i = 20:

Columns 14 through 17

{[-6.2722e-07]} {[2.0910e-07]} {[-6.9628e-08]} {[2.3421e-08]}

Columns 18 through 21

{[-7.1726e-09]} {[4.2939e-09]} {[4.2779e-09]} {[1.5702e-08]}

Columns 22 through 25

{[4.6149e-08]} {[1.3877e-07]} {[4.1619e-07]} {[1.2486e-06]}

The additional parts of Question 6 are meant to emphasize the difference Inf, -Inf, and NaN

and arithmetic operations on these values.
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(a) [The results are -Inf, Inf, and NaN.] -Inf means minus infinity; Inf means positive
infinity; since ±Inf refer to anything beyond double precision, their sum can’t be deter-
mined, and therefore called NaN.

(b) In Problem 6 we add positive infinity with a finite value, and then repeatedly add
two positive infinities, producing the repeating values of Inf, whereas in Problem 5 we
subtract two positive infinities, producing NaN, and then all future iterations become
NaN’s as well.

The following is an additional step not required on the homework:

To see when numbers are beyond double precision, you can run the MATLAB code:

for i=1:350; [ 10^i, -10^i] , end

which shows that ±10308 are the first powers of 10 designated as ±Inf. (Alternatively, you
could look at the top of page 31, Section 2.4, of [A&G].)
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