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The main goal of this homework is to develop some insight into the type linear
algebra that we will need to discuss certain special differential equations, especially
the heat equation.

For the rest of this course, all new material, aside from that in the textbook
[A&G] will be given in the homeworks. These homeworks may also review some of
the previous material.

At this point, given the fallout from COVID-19, I suggest that if you have limited
bandwith or uncertain internet access, then you should download the textbook
[A&G] and the course handouts now, especially the last handout on Energy and
Splines, which we refer to here as [EnergySplines].

Please note: ALL OF THIS HOMEWORK MUST BE DONE BY HAND. You
may not use MATLAB or any other computing device.

1. Some Fundamental Matrices of Interest to Us

In this section we introduce notation to describe two families of matrices of
interest to us to understand certain differential equations. We have seen one of the
families before when we discussed splines.

1.1. Matrices Describing Both Splines and Heat Transfer over a Rod. For
reasons that will become clear later, for any n ∈ N = {1, 2, . . .} we define Nrod,n to
be the matrix Rn×n, i.e., the n× n square matrix

Nrod,n =



0 1 0 0 · · · 0 0 0 0
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
0 0 0 0 · · · 0 0 1 0


.
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For example, we have

Nrod,2 =

[
0 1
1 0

]
, Nrod,3 =

0 1 0
1 0 1
0 1 0

 , Nrod,4 =


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


One can alternatively describe Nrod,n by its entries: for all i, j ∈ [n], the (i, j)-th

component of (
Nrod,n

)
i,j

=

{
1 if i− j = ±1, and
0 otherwise.

We have already seen this matrix when we discussed splines; indeed, it is nothing
more than the “off diagonal part” of the n× n matrix given at the top of page 343
(Section 11.3) of [A&G] in the special case h1 = h2 = · · · = hn = 1. Furthermore,
the full matrix in [A&G] at the top of page 343 (with h1 = h2 = · · · = hn = 1) can
be written more simply as

4In + Nrod,n,

where In dentoes the n × n identity matrix. We use the term “rod” because we
think of the interval [A,B] ([a, b] in the textbook) with arbitrary A and B = A+n
as a finite, one-dimensional rod.

There are some fundamental observations in [EnergySplines], Sections 4.2-4.4,
and the corresponding [A&G] Section 11.3 regarding solving the equation(

4In + Nrod,n

)
c = ψ,

where f is a function that we are modeling, like the profile of a car, and ψ was
called in class the “energy of f ,” since ψ is essentially comprised of second divided
differences of f (again, in the special case where h1 = h2 = · · · = hn = 1). The
observation is that(

4In + Nrod,n

)−1
= (1/4)

(
In − (N/4) + (N/4)2 − (N/4)3 + · · ·

)
which converges “geometrically” since ‖N/4‖∞ ≤ 1/2 (where we have written sim-
ply N for Nrod,n). As a consequence, the formula

c = (1/4)
(
In − (N/4) + (N/4)2 − (N/4)3 + · · ·

)
ψ

tells us that the effect of the values of ψ on c are “localized,” in that for any k ∈ Z,
Nk is only nonzero on entries i, j with |i − j| ≤ k, and the term involving Nk,
namely (N/4)k, has ∞-norm at most 1/2k.

The matrix Nrod,n can also be viewed as describing which integers in [n] =
{1, . . . , n} are “immediate neighbours” or “adjacent.” This matrix is useful in
graph theory, on the graph with vertices 1, . . . , n where we “joined by an edge” any
two vertices differing by 1.

There are many interpretations and applications of this matrix.
Again, as in [EnergySplines] we use the (somewhat awkward choice of) letter N

to suggest the notion that this matrix represents a relation between “neighbours”
along a rod.
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1.2. Matrices Describing Heat Transfer over a (One-Dimensional) Ring.
Many computations turn out to be simpler when we “connect” the endpoints of the
above rod, bending the rod to form a ring. This gives us the matrix

Nring,n =



0 1 0 0 · · · 0 0 0 1
1 0 1 0 · · · 0 0 0 0
0 1 0 1 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 1 0 1 0
0 0 0 0 · · · 0 1 0 1
1 0 0 0 · · · 0 0 1 0


,

which is just the matrix Nrod,n with a 1 added to the top right and to the bottom
left corners. This matrix as each column sum and each row sum equal to 2; it also
has a cyclic symmetry that makes it a Toeplitz matrix (see the Wikipedia page on
Toeplitz Matrix); we may return to Toeplitz matrices later.

For example, we have

Nring,2 =

[
1 1
1 1

]
, Nring,3 =

0 1 1
1 0 1
1 1 0

 , Nring,4 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0



2. Matrix Multiplication, Polynomials, Power Series, and
Exponentiation Involving the Rod and Ring Matrices

In this section we will give the tools we need to carry out calculations with the
rod and ring matrices defined above.

2.1. Rod Matrices and Shift Operators. Let us interpret the matrix Nrod,n

for a fixed n as an operator.
First, for any n ∈ N, note that

Nrod,n = Sn,1 + Sn,−1,

where

Sn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 0


, Sn,−1 =



0 0 0 0 · · · 0 0 0 0
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


;

hence Sn,1 is the nonzero part of Nrod,n that lies above the diagonoal, and Sn,−1
the part below. However, Sn,1 has a simple interpretation as “shifting up by one,”
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in the sense that for any x = (x1, x2, . . . , xn) ∈ R (which, as always, we think of as
a column vector),

Sn,1 x =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
0 0 0 0 · · · 0 0 0 0


,



x1

x2

x3

x4

...
xn−3
xn−2
xn−1
xn


=



x2

x3

x4

x5

...
xn−2
xn−1
xn

0


Hence the way that Sn,1 operates on a vector x is to move all its components up
by one, and introduce a zero in the bottom component. Similarly we have

Sn,−1 x =



0
x1

x2

...
xn−3
xn−2
xn−1,


so Sn,−1x operates by shifting the components of x down by one and introduces a
0 on the top.

2.2. Ring Matrices and Cyclic Shift Operators. Working with ring matrices
is much simpler, because they can be described as a sum of cyclic shift operators:
indeed, for any n ∈ N, note that

(1) Nring,n = Cn,1 + Cn,−1,

where

Cn,1 =



0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
0 0 0 1 · · · 0 0 0 0
0 0 0 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0
0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0


, Cn,−1 =



0 0 0 0 · · · 0 0 0 1
1 0 0 0 · · · 0 0 0 0
0 1 0 0 · · · 0 0 0 0
0 0 1 0 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 0 0 0
0 0 0 0 · · · 1 0 0 0
0 0 0 0 · · · 0 1 0 0
0 0 0 0 · · · 0 0 1 0


.
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Similarly to the previous subsection, we have

(2) Cn,1



x1

x2

x3

...
xn−2
xn−1
xn


=



x2

x3

x4

...
xn−1
xn

x1,


and hence Cn,1 has the effect of “cyclically rotating the components of x up by one,”
taking the x1 to be its bottom component, instead of the 0 that Sn,1 introduces.
Similarly we have

(3) Cn,−1



x1

x2

x3

...
xn−2
xn−1
xn


=



xn

x1

x2

...
xn−3
xn−2
xn−1


2.3. Ring Matrices and the Cn,±1 are Easier to Work With than Rod
Matrices and the Sn,±1. For many computations, it is easier to work with the
Cn,±1 than the Sn,±1, and to see how powers and polynomials of

Nring,n = Cn,1 + Cn,−1,

behave as opposed to

Nrod,n = Sn,1 + Sn,−1.

For example, to interpret N2
ring,n, we have

N2
ring,n =

(
Cn,1 + Cn,−1

)2
which equals

(4)
(
Cn,1 + Cn,−1

)(
Cn,1 + Cn,−1

)
To simiplify such an expression we note that

C2
n,1



x1

x2

x3

...
xn−2
xn−1
xn


=



x3

x4

x5

...
xn

x1

x2,


which just cyclically shifts the components of x by 2. More generally, if for any
k ∈ N, if we set

Cn,k = Ck
n,1,
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then Cn,k is the operator that cyclically rotates the components of a vector up by
k; similarly for Cn,−k = Ck

n,−1. We similarly see that Cn,−1Cn,1x is just x, and
hence

Cn,−1Cn,1 = Cn,1Cn,−1 = In

the identity matrix. Hence all the Cn,±k are invertible, and they all commute;
setting Cn,0 = In (which makes sense, in that shifting by 0 does nothing to a
vector), we conclude that(

Cn,1 + Cn,−1
)2

= Cn,2 + 2In + Cn,−2.

Furthermore, this can be seen as a manifestation of the identity(
x + x−1

)2
= x2 + 2 + x−2.

Unfortunely, things are not as simple with the matrices or operators Sn,1 and
Sn,−1. For one thing, Sn,1 is not invertible, since its bottom row consists entirely
of 0’s. And it is also not true that Sn,1 and Sn,−1 commute: i.e.,

Sn,−1Sn,1 6= Sn,1Sn,−1

(see the exercises). It turns out that for positive integers, k, one can set Sn,k = Sk
n,1,

and this has as reasonable interpretation, just as does Sn,−k = Sk
n,−1, but when we

multiply positive of powers of Sn,1 times those of Sn,−1, the operators we get will
operate on a vector x like cyclic shifts except that some of the xi are replaced by
zero.

3. Review of Polynomials and Power Series in Matrices

We will use Rn×n for a the set of n× n of matrices with real entries.
Recall that if A is an n× n matwe use the notation

A0 = I, A1 = A, A2 = AA, A3 = AAA,

and that all these matrices commute, i.e.,

AsAr = ArAs

for all r, s ∈ Z≥0 = {0, 1, 2, . . .}.
If p(x) = c0 + c1x + · · ·+ cmxm is a polynomial, we define

p(A) = c0I + c1A + · · ·+ cmAm

where I = In ∈ Rn×n is the n×n identity matrix (and where ci ∈ R or ci ∈ C, i.e.,
the coefficients are real-valued or complex-valued).

If p, q are any two polynomials, then we easily see that p(A) and q(A) commute,
i.e.,

p(A)q(A) = q(A)p(A),

and, moreover, if
r(x) = p(x)q(x)

is the usual product of polynomials, then we use the shorthand r = pq, and we have

r(A) = (pq)(A) =
(
p(A)

)(
q(A)

)
.

Example 3.1. If p(x) = x + 2 and q(x) = x + 1, then

(A + 2I)(A + I) = (A + I)(A + 2I) = A2 + 3A + 2I

= “(x2 + 3x + 2)
∣∣
x=A

” = et cetera
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In [EnergySplines], Section 4.2–4.4 we extended the notion of a polynomial of a
matrix, A, to power series in A, such as

(5) (I + A)−1 = I −A + A2 −A3 + · · ·

which is the matrix analog of

1

1 + x
= 1− x + x2 − x3 + · · ·

and where the power series in A converges whenever ‖A‖∞ < 1 (or similarly for
other matrix norms), just as the power series in x converges whenever |x| < 1.

For reasons that will become clear when we work with differential equations, we
will also be interested in the analog of the Taylor expansion for ex about x = 0,
namely

ex = 1 + x + x2/2 + x3/3! + x4/4! + · · ·
which is valid for all x ∈ R, and its matrix analog

eA = I + A + A2/2 + A3/3! + A4/4! + · · ·

which converges for all A ∈ Rn×n. Roughly speaking, the reason is that the solution
to the differential equation dx/dt = ax for a constant a ∈ R, and variables x, t is
given by x(t) = x(0)eat; similarly, the solution to the vector-valued differential
equation dx/dt = Ax for an A ∈ Rn×n and x = x(t) taking values in Rn turns out
to be

x(t) = eAtx(0).

We will discuss this further in the next homework.

EXERCISES

(1) Let us make some calculations regarding the matrices Sn,1 and Sn,−1 in the
case n = 3, where

S3,1 =

0 1 0
0 0 1
0 0 0

 , S3,−1 =

0 0 0
1 0 0
0 1 0


(a) Using regular matrix multiplication, compute the expressions S3,1S3,−1

and S3,−1S3,1. Are they equal?
(b) Compute the way S3,1S3,−1 operates on a vector x = (x1, x2, x3) ∈ R3

as

S3,1

(
S3,−1x

)
,

i.e., by first computing

S3,−1

x1

x2

x3

 ,

and then applying S3,1 to the result.
(c) Similarly compute the way that S3,−1S3,1 operates on a vector x =

(x1, x2, x3) ∈ R3.
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(d) Using matrix multiplications, compute the values of

S2
3,1, S3

3,1.

(e) Compute the way that

S2
3,1, S3

3,1

operate on a vector x = (x1, x2, x3) ∈ R3 by applying twice and three
times, respectively, the operation of S3,1 on x.

(f) Compute the value of

eS3,1t

using the formula

eAt = I + (At) + (At)2/2 + (At)3/3! + · · ·
using either direct matrix calculations or operator calculations as
above.

(g) Compute the value of (I + S3,1)−1 using (5). Check your work by
multiplying this result by I + S3,1 to see that you get the identity
matrix.

(2) (a) Assuming that x ∈ R is nonzero, simplify the expression(
x + x−1

)3
.

(b) Fix any value of n ∈ Z; simplify the expression(
Cn,1 + Cn,−1

)3
.

(c) Using the binomial theorem

(x + y)n = xn + nxn−1y +

(
n

2

)
xn−2y2 + · · ·+ nxyn−1 + yn,

write an expression for(
x + x−1

)n
.

(d) Using the binomial theorem, write an expression for(
Cn,1 + Cn,−1

)n
.

(3) Let

A = Nring,2 =

[
1 1
1 1

]
,

and for n ∈ Z≥0 = {0, 1, 2, . . .}, set Xn = An, i.e.,

X0 = I2, X1 = A, X2 = A2, . . .

(a) Show that

X0 =

[
1 0
0 1

]
, X1 =

[
1 1
1 1

]
, X2 =

[
2 2
2 2

]
.

(b) Can you guess a formula for Xn based on these three examples? [There
is no credit for this part, but you should take a new moments to see if
there is some simple pattern to this sequence.]
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(c) Show that for any a, b ∈ R, we have[
a a
a a

] [
b b
b b

]
=

[
2ab 2ab
2ab 2ab

]
(d) Explain concisely why we may now conclude that for any a ∈ R we

have [
a a
a a

] [
1 1
1 1

]
=

[
2a 2a
2a 2a

]
(e) Show that the next few terms in the sequence {Xn} are

X3 =

[
4 4
4 4

]
, X4 =

[
8 8
8 8

]
.

(f) Show that the {Xn} satisfy the “two-term (matrix) recurrence equa-
tion”

Xn+1 = Xn

[
1 1
1 1

]
and also the recurrence equation

(6) Xn+1 =

[
1 1
1 1

]
Xn, n ≥ 0

(g) Have we seen such a “two-term (matrix) recurrence equation” related
to the Fibonacci numbers? What is this “two-term (matrix) recurrence
equation” related to the Fibonacci numbers?

(h) Are you surprised that, in view of the fact that

X1 =

[
1 1
1 1

]
, X2 =

[
2 2
2 2

]
, X3 =

[
4 4
4 4

]
, X4 =

[
8 8
8 8

]
.

that

X0 6=
[
1/2 1/2
1/2 1/2

]
?

[No credit for your answer to this question, just say whether or not
you were surprised.] Explain why, in retrospect, you shouldn’t be very
surprised. [Full credit for your explanation here.]
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