
CPSC 303: NORMAL AND SUBNORMAL NUMBERS IN

DOUBLE PRECISION

JOEL FRIEDMAN

Contents

1. Normal Numbers, Subnormal Numbers, and Special Values 1
Exercises 3

Copyright: Copyright Joel Friedman 2020. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

Disclaimer: The material may sketchy and/or contain errors, which I will elab-
orate upon and/or correct in class. For those not in CPSC 303: use this material
at your own risk. . .

The main goal of this note is to explain why the largest positive number MAT-
LAB reports is 1.7977e+308 (roughly 21024), while the smallest positive number is
4.9407e-324 (or 2−1074). The key is to understand normal and subnormal numbers
in double precision.

The content of this note all appears in the solution to Homework 2 in CPSC 303
in Spring 2020; this note is slightly edited and explains some three-term recursions
studied in Homework 1 and 2 in Spring 2020.

1. Normal Numbers, Subnormal Numbers, and Special Values

Double precision mostly works with numbers written in base 2 scientific notation
as

s × 1.b1b2 . . . b52 × 2m

where s = ±, b1, . . . , b52 ∈ {0, 1} are bits (binary digits), and m = −1022, . . . , 1023;
such a number is called a normal number. The 52 bits b1, . . . , b52 gives you “53 bits
of precision” (or 52 bits of precision, depending on if you view 3.45 having 2 or 3
digits of precision). There are 2046 possible values of m, from −1022 to 1023, which
requires 11 bits (binary digits) to describe, and leaves two (since 211 − 2046 = 2)
special values:

(1) one of these two special values (of the 2048 possible values) is for values like
Inf, -Inf, and Nan (this special value has a sign, s, plus 52 bits b1, . . . , b52
to describe the particular special value you mean);

Research supported in part by an NSERC grant.

1



2 JOEL FRIEDMAN

(2) the other special value is for subnormal numbers, where when double pre-
cision understands that you mean the number

± 0.b1b2 . . . b52 × 2−1022.

In this way you can express numbers as small as

0. 000 . . . 000︸ ︷︷ ︸
51 0’s

1 × 2−1022,

as a subnormal numbers in double precision, which is 2−52×2−1022 = 2−1074;
of course, for this number you only have one bit (binary digit) of precision
(or zero bits of precision, depending on how you count); you can only count
on a full 53-bits of precision if your number is 2−1022 or larger, and the
smaller a subnormal number is, the more precision you will lose.

The (current) Wikipedia article on Double-precision floating-point format has a
good explanation of this with examples; for example, the largest number in double
precision is

(1) 1. 1111 . . . 1111︸ ︷︷ ︸
52 1’s

× 21023 =
(
2− (1/2)52

)
21023 ≈ 21024,

and this is a normal number—the kind you should be working with—since you get
a full 53 bits of precision, because normal numbers are written as 1. followed by 52
more bits (binary digits). The smallest positive normal number is 2−1022.

In CPSC 303 we consider the following three-term recurrences: we fix an r ∈ R,
typically with 0 < r < 1, and consider the recurrence

(2) xn+2 = (1 + r)xn+1 − rxn,

whose general solution is

(3) C1 + C2r
n.

The recurrence subject to the initial condition x0 = 1, x1 = r has the solution
xn = rn (i.e., C1 = 0 and C2 = 1) in exact arithmetic. However, for a typical value
of 0 < r < 1 the numerical solution ressembles a sequence that looks like C2 = 1
and C1 is very small (typically on the order of magnitude ±10−18) but not exactly
0. The exception to this are values like r = 1/2, 1/4, 3/4, where r is a rational
number whose denominator is a power of 2.

On Homework 2 in Spring 202, we worked with r = 1/8; in this case the recur-
rence looks like

xn+2 = (9/8)xn+1 − (1/8)xn,

and the exact solution for x0 = 1 and x0 = 1/8 is xn = (1/8)n. Since we are
working with powers of 1/8, each power of 8 looks like

1. 000 . . . 000︸ ︷︷ ︸
52 0’s

× 2m

for −1022 ≤ m ≤ 1023, which are normal numbers, but for m ≤ −1023 these
powers of 2 (or 8) are the special subnormal numbers that look like

0. 000 . . . 000︸ ︷︷ ︸
some 0’s

1 000 . . . 000︸ ︷︷ ︸
more 0’s

× 2−1022

https://en.wikipedia.org/wiki/Double-precision_floating-point_format


CPSC 303: NORMAL AND SUBNORMAL NUMBERS IN DOUBLE PRECISION 3

So in binary arithmetic, the smallest positive number is 2−1074 = 8−358, so I’ll
(probably) trust the numerical computation as exact until the division by 8 in the
recurrence dips below 8−358.

Note that textbook [A&G] does not mention subnormal numbers. Simi-
larly, if you type realmin into MATLAB, it will return 2.2251e-308, since you
can’t count on 53 bits of precision for smaller positive numbers, i.e., subnormal
numbers (and you should realize this caveat in working with smaller positive num-
bers). However, MATLAB will report subnormal numbers without telling you this,
which explains why you can see positive numbers as small as 2−1074 ≈ 4.94×10−324,
while you only see positive numbers as large 21024 ≈ 1.80 × 10308 (where 1.80 is
obtained by rounding 1.7977, rather than a truncation).

Exercises

(1) Run the MATLAB code

for n=50:55, n, 2^(1023) * (2 - 2^(-n) ), end,

Describe the results, and explain what this has to do with (1).

(2) (a) Run the MATLAB code

clear

x{1}=1

x{2}=3/4

for i=3:250, x{i}=(7/4)*x{i-1} - (3/4)*x{i-2}; end

x

(which is an implementation of (2) with x0 = 1 and x1 = r for the value
r = 3/4). Assuming that for small n = 1 you have xn = C2(3/4)n (to
within a negligible term)and for large n = 249 you have x249 = C1

(in the above MATLAB code, x{250} represents x249), what are the
values of C1 and C2?

(b) Add the following MATLAB code:

C2 = 1

C1 = x{250}

for i=1:250, y{i}=C1 + C2 * (3/4)^(i-1) ; end

y

for i=1:250, ratio{i} = x{i}/y{i}; ratio_versus_one{i} = 1 -ratio{i} ; end

ratio

ratio_versus_one



4 JOEL FRIEDMAN

Describe what you see; in particular describe which values of ratio are
reported by MATLAB as 1, which are reported as 1.0000, which values
of ratio versus one are reported as 0, which values are reported as
something else.

(c) Based on this experiment, what is the difference between the value 1
and 1.0000 that MATLAB reports?

(d) Perform the experiment in the above parts with 250 replaced by 400.
Describe which values MATLAB reports as 1 versus 1.0000 for ratio,
and as 0 versus non-zero for ratio versus one.

(3) (a) Run the MATLAB code

clear

r = 3/4

x{1}=1

x{2}= r

for i=3:200, x{i}=(1+r)*x{i-1} - r*x{i-2}; end

[x{1},x{2},x{3},x{4}]

[x{197},x{198},x{199},x{200}]

(which is an implementation of (2) with x0 = 1 and x1 = r for the
value r = 3/4). What does MATLAB report for x{200}?

(b) Run the same experiment with r = 3/8, then r = 3/16, and then
r = 3/32. What values do you get for x{200}? What is the rough
pattern (e.g., the order of magnitude of x{200}) that you observe for
this value for r = 3/4, 3/8, 3/16, 3/32?

(c) Given that the general solution of (2) is given by (3), and in view of
the way that double precision works, explain in 15-60 words why
you see this pattern in the x{200} values?

Department of Computer Science, University of British Columbia, Vancouver, BC

V6T 1Z4, CANADA.
E-mail address: jf@cs.ubc.ca

URL: http://www.cs.ubc.ca/~jf


	1. Normal Numbers, Subnormal Numbers, and Special Values
	Exercises

