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The goal of this note is to fill in some details and give further examples regarding
the Newton polynomial, also called Newton’s divided difference interpolation poly-
nomial, used in Sections 10.4–10.7 of the course textbook [A&G] by Ascher and
Greif; this refers to the formula

(1)
p(x) = f [x0] + (x− x0)f [x0, x1] + (x− x0)(x− x1)f [x0, x1, x2] + · · ·

+ (x− x0) . . . (x− xn−1)f [x0, x1, . . . , xn]

for the polynomial p that agrees with f at the n+ 1 points x = x0, x1, . . . , xn.
In the textbook we assume that x0, . . . , xn are distinct until Section 10.7—the

the last section in Chapter—and Section 10.7 is extremely brief and states results
without proof. However, the one of the main “selling points” of (1) is that it still
holds (for sufficiently differentiable f) when some of the xi are allowed to be the
same, and that the divided difference f [x0, . . . , xn] remains a well-behaved funtion
of x0, . . . , xn even when some xi are equal or nearly equal.

1. A Proof of Newton’s Divided Difference Interpolation
Polynomial

The textbook [A&G] does not prove Newton’s formula (1): it gives an important
first step of the proof, and leaves the second step as an “challenging” exercise
(Exercise 7 there) without hints. In CPSC 303 this year we gave the second step.

1.1. Upper Triangular Systems. The first step given in [A&G] is a fundamental
observation about “upper triangular change of basis” that occurs in many applica-
tions in many disciplines.

In terms of matrices, the point is that matrices that are upper triangular, such
as [

a b
0 d

]
,

a b c
0 d e
0 0 e


are invertible provided that their diagonal entries are nonzero; furthermore the
inverses are also upper triangular, and this can be proven by seeing that all steps
in Gauss-Jordan elimination used to compute the inverse are “upper triangular
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operations.” [This is taught in CPSC 302, especially in in Chapter 5 of [A&G],
which discusses the LU-decomposition.]

In the application in Section 10.4 to Newton polynomials, the story of “upper
triangular change of basis” goes like this: if φ0, . . . , φn are polynomials such that
for all i ∈ [n], φi is exactly of degree i, then any polynomial, p = p(x), of degre n
over R,

p(x) = c0 + c1x+ · · ·+ cnx
n

can be uniquely expressed as a linear combination

(2) p(x) = α0φ0(x) + · · ·+ αnφn(x),

since the αi’s can be written in terms of the ci’s, and vice versa, in terms on an
upper triangular matrix. This is an extremely important observation.

Example 1.1. For every c0, c1, c2 there is a unique α0, α1, α2 such that

(3) c0 + c1x+ c2x
2 = α0 + α1(x− 1) + α2(x− 1)2

(where = means equal as polynomials), since

α0 + α1(x− 1) + α2(x− 1)2 = x2α2 + x
(
−2α2 + α1

)
+
(
α2 − α1 + α0

)
,

and therefore (3) is equivalent to1 −2 1
0 1 −1
0 0 1

α2

α1

α0

 =

c2c1
c0

 ;

we easily see that 1 −2 1
0 1 −1
0 0 1

−1 =

1 2 1
0 1 1
0 0 1

 ,
and hence the linear system above is equivalent to1 2 1

0 1 1
0 0 1

c2c1
c0

 =

α2

α1

α0

 .
Example 1.2. Let p(x) = 3 + 4x+ 5x2, and consider the task of writing p(x) as

α0(303) + α1(2020x+ 2021) + α2(13x2 + 18x+ 120),

which is (2) in the special case n = 2 and φ0 = 303, φ1 = 2020x + 2021, φ2 =
13x2 + 18x+ 120. This gives us the system13 18 120

0 2020 2021
0 0 303

α2

α1

α0

 =

5
4
3

 .
The equation

c0 + c1x+ c2x
2 = α0(303) + α1(2020x+ 2021) + α2(13x2 + 18x+ 120)

is equvalent to writing

(4)

13 18 120
0 2020 2021
0 0 303

α2

α1

α0

 =

c2c1
c0

 .
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We compute13 18 120
0 2020 2021
0 0 303

−1 =

1/13 −9/13130 −34337/1326130
0 1/2020 −2021/612060
0 0 1/303

 ,
and it follows that (4) is equivalent to the “inverse” upper triangular system:α2

α1

α0

 =

1/13 −9/13130 −34337/1326130
0 1/2020 −2021/612060
0 0 1/303

c2c1
c0

 .
Example 1.3. The formulas

cos(2x) = 2 cos2 x− 1, cos(4x) = 8 cos4 x− 8 cos2 +1

can be written as 8 −8 1
0 2 −1
0 0 1

cos4 x
cos2 x

1

 =

cos(4x)
cos(2x)

1

 .
Which is equivalent to writingcos4 x

cos2 x
1

 =

8 −8 1
0 2 −1
0 0 1

−1 cos(4x)
cos(2x)

1


=

1/8 1/2 3/8
0 1/2 1/2
0 0 1

cos(4x)
cos(2x)

1

 .
This gives rise to the formulas

cos2 x = (1/2) cos(2x) + (1/2), cos4 x = (1/8) cos(4x) + (1/2) cos(2x) + (3/8),

useful in integrating cos2 x and cos4 x.

See the exercises for more examples of upper triangular “basis exchange.”

1.2. Divided Differences and the Lagrange Formula. In class we showed
that if x0 < x1 < x2 are real, and if f : R → R is any function, then the unique
polynomial

p(x) = c0 + c1x+ c2x
2

passing through the data points (x0, y0), (x1, y1), (x2, y2) has

(5) c2 =
y0

(x0 − x1)(x0 − x2)
+

y1
(x1 − x0)(x1 − x2)

+
y2

(x2 − x0)(x2 − x1)
.

We proved this by considering the Lagrange form of p(x), namely

y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ y1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ y2

(x− x0)(x− x1)

(x2 − x0)(x2 − x0)
,

which allows us to easily read off the x2-coefficient to verify (5). We also showed
by explicit computation that

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

(6) =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.
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Hence (6) and (5) are the same formula when identifying yi with f(xi) for i = 0, 1, 2,
and hence

c2 = f [x0, x1, x2],

and so

p(x) = c0 + c1x+ f [x0, x1, x2]x2

in this case. We can write similar—but more complicated—formulas for c1 and for
c0 if we like, but we won’t need these formulas.

We easily extend this to prove a similar formula for f [x0, . . . , xn] and to show
that

cn = f [x0, . . . , xn]

where

p(x) = c0 + c1x+ · · ·+ cnx
n

is the unique polynomial such that p(xi) = f(xi) for all i = 0, . . . , n; the formula
for cn = f [x0, . . . , xn] is
(7)

f [x0, . . . , xn] =
f(x0)

(x0 − x1)(x0 − x2) . . . (x0 − xn)
+· · ·+ f(xn)

(xn − x0)(xn − x1) . . . (xn − xn−1)
.

1.3. Invariance Under Order. The formula (7) for the divided difference
f [x0, . . . , xn] shows that the divided difference does not depend on the order of
x0, . . . , xn.

This independence of the order is clear from the fact that f [x0, . . . , xn] is the
xn-coefficient in the interpolating polynomial. Let us illustrate this in case n = 2:
if p is the unique polynomial of degree at most two such that

p(x0) = f(x0), p(x1) = f(x1), p(x2) = f(x2),

then one gets the same p if one requires that

p(x1) = f(x1), p(x2) = f(x2), p(x0) = f(x0),

since these three equalities can be written in any order. So as soon as one knows
that c2 = f [x0, x1, x2] in the expression p(x) = c0 + c1x + c2x

2, it is clear that
f [x0, x1, x2] must be independent of the order of x0, x1, x2.

1.4. End of Proof. In class and the textbook we easily see that

p(x) = f [x0] + f [x1, x0](x− x0)

is the secant line of f at x = x0 and x = x1, i.e., p(x) is the unique line y = p(x)
that intersects y = f(x) at x = x0, x1. This is the formula (1) in the case n = 1;
the case n = 0 of (1) is immediate.

Now we explain how to use the n = 1 case of (1) to prove the case where n = 2.
The upper triangular argument shows that if q(x) is the unique polynomial of

degree at most two such that y = q(x) meets y = f(x) at three distinct points
x = x0, x1, x2 (i.e., q(x) = f(x) for x = x0, x1, x2), then

q(x) = c0 + c1x+ c2x
2, with c2 = f [x0, x1, x2].

It follows that q(x) and f [x0, x1, x2](x − x0)(x − x1) have the same x2-coefficient,
hence

r(x) = q(x)− f [x0, x1, x2](x− x0)(x− x1)
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is a polynomial of degree at most 1. However, since (x − x0)(x − x1) equals 0 at
x = x0 and x = x1, we have that r(x) = q(x) = f(x) on both x = x0, x1. Hence

r(x) = f [x0] + f [x1, x0](x− x0)

(by the previous paragraph), and hence

q(x) = r(x) + f [x0, x1, x2](x− x0)(x− x1)

= f [x0] + f [x1, x0](x− x0) + f [x0, x1, x2](x− x0)(x− x1).

Now we know (1) holds for n = 2; an argument similar to the previous paragraph
shows that if (1) holds for n = 2 then it also holds for n = 3. Similarly, the case
n = 3 implies the case n = 4, etc. More formally we can prove (1) for any n using
induction on n.

Note that the fact that r(x) above is a polynomial of degree at most 1 is inti-
mately connected to the upper triangular relation between the two “bases”

1, x, x2 and 1, x− x0, (x− x0)(x− x1).

2. Adding One Data Point

Divided differences are useful in adding an additional interpolation point, a fea-
ture not found in the other two methods of Chapter 10, namely Section 10.2 (the
standard basis) and 10.3 (the Lagrange formula). Let us give a concrete example.

Let x0 = 2, x1 = 3, and x2 = 5 (to be very concrete), and let p(x) be the unique
functin c0 + c1x that agrees with a function, f , at x = 2 and x = 3; therefore

p(x) = f [2] + f [2, 3](x− 2).

The unique polynomial

q(x) = ĉ0 + ĉ1x+ ĉ2x
2

that agrees with f at x = 2, 3, 5 is given by

q(x) = f [2] + f [2, 3](x− 2) + f [2, 3, 5](x− 2)(x− 3),

and hence

(8) q(x) = p(x) + f [2, 3, 5](x− 2)(x− 3).

This means that if we have already computed p(x), we can add the x = 5 interpo-
lation point and obtain q(x) with the above formula.

Our other methods for finding q(x) = ĉ0 + ĉ1x + ĉ2x
2 that agrees with f on

x = 2, 3, 5 are

(1) to solve 1 2 4
1 3 9
1 5 25

ĉ0ĉ1
ĉ2

 =

f(2)
f(3)
f(5)

 ,
or

(2) to write

q(x) = f(2)
(x− 3)(x− 5)

(2− 3)(2− 5)
+ f(3)

(x− 2)(x− 5)

(3− 2)(3− 5)
+ f(5)

(x− 2)(x− 3)

(5− 2)(5− 2)
.
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Neither of these methods allow us to pass so easily from p(x) to q(x) as in (8).
However, note that the third term in the Lagrangian

f(5)
(x− 2)(x− 3)

(5− 2)(5− 2)

and the third term in Newton’s formula

f [2, 3, 5](x− 2)(x− 3)

are related, as they are both multiples of (x− 2)(x− 3).

3. The Generalized Mean-Value Theorem

Rolle’s Theorem says that if a < b are reals, and f is differentiable on (a, b) and
continuous on [a, b], then f ′(ξ) = 0 for some ξ ∈ (a, b).

In particular, under the same assumptions, since there is a unique line p(x) =
c0 + c1x such that p(a) = f(a) and p(b)− f(b), we may apply Rolle’s Theorem to
g(x) = p(x)− f(x) and conclude that 0 = g′(ξ) = p′(ξ)− f ′(ξ) for some ξ ∈ (a, b).
For such a ξ we have

f ′(ξ) = p′(ξ) = c1,

and we easily see that

c1 =
f(b)− f(a)

b− a
= f [a, b].

Hence we conclude that

f(b)− f(a)

b− a
= f [a, b] = f ′(ξ)

for some ξ ∈ (a, b), which is the usual Mean-Value Theorem of calculus.
Similarly, we see that if x0, . . . , xn are distinct real numbers, f : R → R is n-

times differentiable, and p is the unique polynomial of degree at most n such that
p(xi) = f(xi) for i = 0, . . . , n, then by repeatedly applying Rolle’s theorem (to
f(x)− p(x)), we see that there is a ξ ∈ R (in the interval containing x0, . . . , xn) at
which the n-th derivative of f(x)− p(x) is zero; at any such ξ we have

f (n)(ξ) = p(n)(ξ) = n!cn

since p(x) = c0 + c1x+ · · ·+ cnx
n. Since cn = f [x0, . . . , xn], it follows that for any

such ξ,

f (n)(ξ) = n! cn = n! f [x0, . . . , xn].

This is just the theorem on “Divided Difference and Derivative” at the bottom of
[A&G], p.312, Section 10.4. For this reason, this theorem is really a “generalized
Mean-Value Theorem.”

4. The Remainder Theorem for the Error in Polynomial
Interpolation

In this section we use the Generalized Mean-Value Theorem above and one clever
idea to prove a Remainder Theorem for the error in polynomial interpolation, given
in Section 10.5 in [A&G]. After doing so we summarize Section 10.6 of [A&G].
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Given distinct x0, . . . , xn, xn+1 ∈ R in an interval (a, b), and a function
f : (a, b) → R that is (n + 1)-times differentiable, let pn(x) be the unique poly-
nomial of at most degree n that agrees with f on x0, . . . , xn, and pn+1 the unique
polynomial of degree at most n+ 1 that agrees with f on x0, . . . , xn, xn+1. Then

pn+1(x)− pn(x) = (x− x0) . . . (x− xn−1)(x− xn)f [x0, . . . , xn+1],

which by the Generalized Mean-Value Theorem equals

(x− x0) . . . (x− xn−1)(x− xn)
f (n+1)(ξ)

(n+ 1)!

for some ξ ∈ (a, b). Now take x = xn+1 in the above formula (we regard this is a
clever trick): we get

pn+1(xn+1) = pn(xn+1) + (xn+1 − x0) . . . (xn+1 − xn−1)(xn+1 − xn)
f (n+1)(ξ)

(n+ 1)!
.

But recall that pn+1(x) and f(x) agree on x = xn+1. Hence

f(xn+1) = pn(xn+1) + (xn+1 − x0) . . . (xn+1 − xn−1)(xn+1 − xn)
f (n+1)(ξ)

(n+ 1)!
.

But since xn+1 is any real different from x0, . . . , xn, one can say that for any
x ∈ (a, b) there is a ξ ∈ (a, b) such that

f(x) = pn(x) + (x− x0) . . . (x− xn−1)(x− xn)
f (n+1)(ξ)

(n+ 1)!
.

Of course, if x is not distinct from the x0, . . . , xn, i.e., for some i we have x = xi,
then the above formula holds automatically (for any ξ) since f(xi) = p(xi) and the
(xi − x0) . . . (xi − xn) = 0.

Section 10.6 of [A&G] makes the following point: imagine that |f (n+1)(ξ)| is
bounded on (a, b) by M . Then the error in interpolation, for any x ∈ (a, b), is
bounded by

(9)
∣∣f(x)− pn(x)

∣∣ ≤ M

(n+ 1)!
max
x∈(a,b)

|x− x0| . . . |x− xn|.

Furthermore, by the remainder theorem, this inequality is not far from equality
when |f (n+1)| is “close to” M throughout (a, b). So if we are able choose x0, . . . , xn
as we like, we might choose the x0, . . . , xn so that

max
x∈(a,b)

|x− x0| . . . |x− xn|

is small as possible; this choice of x0, . . . , xn are Chebyshev points for the interval
(a, b). Section 10.6 explains more about such x0, . . . , xn.

5. The Newton Polynomial: A “Uniform” Formula in the Presence of
Degeneracy

In this section we emphasize some points made in Section 10.7 of [A&G].
The real selling point of the Newton form of interpolation (1) for the unique

polynomial p such that p and f agree “on all xi” is that it is valid for all x0, . . . , xn ∈
R—not merely xi that are all distinct—provided that f is sufficiently differentiable.
Furthermore, f [x0, . . . , xm] is continous (differentiable, twice differentiable, etc.) in
x0, . . . , xn provided that f satisfies certain properties.
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In other words, the Newton form of polynomials interpolation holds for any
x0, . . . , xn, and the divided differences f [x0, . . . , xm] express what happens in “de-
generate cases” when some of the xi are the same (or nearly the same). Let us
explain what this means.

5.1. A Degenerate Case of x0 = x1. Let us consider some “degenerate limits”
in interpolation from the point of view of Newton’s formula.

First consider the case x0 = 2, x1 = 2 + ε

p(x) = f(2) + (x− 2)f [2, 2 + ε].

We have

lim
ε→0

f [2, 2 + ε] = lim
ε→0

f(2 + ε)− f(2)

ε
= f ′(2)

assuming the derivative f ′(2) exists. For this reason it is natural to define

f [2, 2]
def
= f ′(2),

when f ′(2) exists; then ε→ 0 gives the formula

p(x) = f(2) + (x− 2)f [2, 2],

and the limiting interpolating (linear) polynomial is

(10) p(x) = f(2) + (x− 2)f [2, 2] = f(2) + (x− 2)f ′(2),

which is the familiar tangent line of f at x = 2.

5.2. Agreement to Higher Order. Note that in (10) we have that p(x) is the
tangent line to f(x) at x = 2; hence we conclude

p(2) = f(2), p′(2) = f ′(2) = f [2, 2]

(which we can also conclude by differentiating p(x)), and so we say that p and
f agree to order two at x = 2. More generally, for k = 1, 2, . . . we say that two
functions g, f agree to order k at x = a if

g(a) = f(a), g′(a) = f ′(a), . . . , g(k−1)(a) = f (k−1)(a),

i.e., if g − f and its first k − 1 derivatives vanish at x = a (assuming that all these
derivatives exist).

5.3. Another x0 = x1 Degenerate Case. Next consider the case x0 = 2, x1 =
2 + ε, and x2 = 3 in Newton’s polynomial, where ε is a real number:

p(x) = f(2) + (x− 2)f [2, 2 + ε] + (x− 2)
(
x− (2 + ε)

)
f [2, 2 + ε, 5].

Taking ε→ 0 gives the formula

p(x) = f(2) + (x− 2)f [2, 2] + (x− 2)2f [2, 2, 5],

provided that we define

f [2, 2, 5]
def
= lim

ε→0
f [2, 2 + ε, 5]

and this limit exists (and that we define f [2, 2] as f ′(2)). Unlike the situation in
the previous subsection with f [2, 2], the question of whether or not the limit

lim
ε→0

f [2, 2 + ε, 5]
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exists is more subtle; however, since 2, 2 + ε, 5 are distinct reals for small ε 6= 0, we
have

lim
ε→0

f [2, 2 + ε, 5] = lim
ε→0

f [2, 5]− f [2, 2 + ε]

5− (2 + ε)

(using the symmetry of f [x0, x1, x2] under permuting the x0, x1, x2), so if f [2, 2] =
f ′(2) exists, we have

lim
ε→0

f [2, 5]− f [2, 2 + ε]

5− (2 + ε)
=
f [2, 5]− f [2, 2]

3
.

More generally, if x1 = x0 but x2 6= x0, and if f is differentiable at x = x0, then
f [x0, x0] and f [x0, x0, x2] both exist and

f [x0, x0, x2] =
f [x0, x2]− f [x0, x0]

x2 − x0
.

Hence the formula

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0
also holds when x0 = x1 provided that f ′(x0) exists.

Note that is this case we have a limiting Newton polynomial, p(x), given by

p(x) = f [2] + (x− 2)f [2, 2] + (x− 2)2f [2, 2, 5].

This shows that

p(2) = f(2), p′(2) = f ′(2),

and hence again p, f agree to order two at x = 2.
This situation and the one in the previous subsection are “degenerate” cases

x0 = x1 = 2, where the value 2 occurs twice among the x0, . . . , xn. This results in
p, f agreeing to order two at x = 2. This is how we generally interpret degenerate
cases of interpolation, where we allow some of the x0, . . . , xn to be the same, and
we accordingly get higher order agreement on the xi that are repeated. This is
spelled out at the bottom of page 319 (Section 10.7) of [A&G].

5.4. Multiple Roots and Multiple Argreement. Another way to understand
agreement to multiple orders is via multiple roots in polynomials, which you have
likely already seen somewhere.

The polynomial

p(x) = (x− 1)(x− 5)2(x− 7)3

is said to have a simple root at x = 1, a double root at x = 5, and a triple root at
x = 7. Some computation shows that

p(x) = 2(x− 5)(x− 7)2(3x2 − 23x+ 32),

which indicates the general principle that if p has a double root (respectively, triple
root, etc.) at x = a, then p′ has a single root (respectively, double root, etc.) at
x = a. More genearlly, whenever

p(x) = (x− 7)3q(x)

for another polynomial q(x), the product rule shows that

p′(x) = 3(x− 7)2q(x) + (x− 7)3q′(x),

and so p′(x) is necessarily divisible by (x− 7)2; hence if p(x) has a root or zero of
order 3 at x = 7, then p′(x) must have a root or zero of order at least 2 at x = 7.
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More generally, if f : R → R is n-times differentiable, and k < n is an integer,
we say that f = f(x) has a root (or zero) of order at least k at x = a if

f(a) = f ′(a) = · · · = f (k−1)(a) = 0,

and of order exactly k if, moreover, f (k)(a) 6= 0. It follows from this definition that
if f has a zero of order at least k (respectively, exactly k) at x = a, then f ′ has a
zero of order at least k − 1 (respectively, exactly k − 1).

It follows that if two functions g, f agree at x = a to some order k, then it is
equivalent to say that g − f has a zero at x = a to order k.

5.5. Rolle’s Theorem for Multiple Agreement. Rolle’s theorem implies that
if f has n + 1 roots on some interval, then f ′ has n roots on this interval, and f ′′

has n− 1 roots on this interval, etc., assuming that f has enough derivatives.
We can also prove a Rolle’s theorem for multiple agreement; it is easiest to

understand this by an example: if a function f has a zero of order 10 at x = 1 and
a zero of order 20 at x = 2, then “counting mulitiplicites” we say that f has at
least 10 + 20 = 30 zeros. Rolle’s theorem implies that f ′(ξ) = 0 for some ξ with
1 < ξ < 2; we also know that f ′ will have a zero of order at least 9 at x = 1 and
at least 19 at x = 2; this which gives 1 + 9 + 19 = 29 zeros of f . Hence the 30
“zeros counted with multiplicty” of f on [1, 2] implies that f ′ has at least 29 zeros
counted with multiplicity on [1, 2].

In this fashion, counting intermediate zeros of f ′ along with guaranteed zeros of
f due to multiplicity, we can prove that if f is differentiable on some interval and
has n+ 1 zeros there (counted with mulitplicity), then f ′ has at least n zero there
(counted with multiplicity), and f ′′ at least n− 1, etc.

5.6. General Interpolation. Say that f is a differentiable function, and we seek
a polynomial

p(x) = c0 + c1x+ c2x
2

such that p that agrees with f on the points x0, x1, x2 where x0 = x1 = 5 and
x2 = 8: we interpret this problem is that we want

p(5) = f(5), p′(5) = f ′(5), p(8) = f(8),

since the value 5 occurs twice among the x0, x1, x2. Since

p′(x) = c1 + 2c2x,

and hence

p′(5) = c1 + 10c2,

the above problem amounts to solving the system1 5 25
0 1 10
1 8 64

c2c1
c0

 =

f(5)
f ′(5)
f(8)

 .
We can prove that this system has a unique solution by modifying the proof that
the interpolation problem with x0, x1, x2 distinct has a unique solution: namely,
the homogeneous system is 1 5 25

0 1 10
1 8 64

c2c1
c0

 =

0
0
0

 ,
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and any solution c2, c1, c0 yields a polynomial p(x) = c0 + c1x + c2x2 that has a
double zero at x = 5 and a single zero at x = 8. This implies that p(x), if nonzero,
must be divisible by (x − 5)2(x − 8), which is impossible since p is of degree at
most 2. [One could also prove that p(x) must be zero using our generalized Rolle’s
Theorem.] Hence the only solution to the homogeneous system is c0 = c1 = c2 = 0.
Hence any non-homogeneous form of this system has a unique solution.

5.7. Taylor Series. If f : R→ R is n-times differentiable near a point x = a, then
as x0, . . . , xn all tend to a, the Mean-Value theorem implies that

f
[
a, . . . , a︸ ︷︷ ︸
k times

] def
= lim

x0,...,xn→a
f [x0, . . . , xn] =

f (k)(a)

k!
,

provided that f is k-times differentiable near x = a and its k-derivative is continuous
at x = a. In this way (1), in the case

x0 = x1 = . . . = xn = a

becomes the polynomial

p(x) = f(a) + (x− a)f ′(a) +
f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n,

which is Taylor’s theorem, we know agrees with f “up to order n+ 1” by Taylor’s
theorem. Furthermore, the error in the Taylor expansion is given by the “Remainder
Term” in Taylor’s theorem,

p(x)− f(x) =
f (n+1)(ξ)

(n+ 1)!

for some ξ between a and x, which is a special case of the “Error in Polynomial
Interpolation” formula.

6. Divided Differences: What We Can Prove and What We “Sweep
Under the Rug”

Let us briefly comment on what we are “sweeping under the rug” (i.e., avoiding)
in CPSC 303 regarding divided differences; we will complement this by stating
some theorems. The real question is how does f [x0, . . . , xn] behave as a function
of (x0, . . . , xn) ∈ R (including those points where some of the xi are equal): this is
both a “selling point” of divided differences, but also a subtle issue.

6.1. The Divided Difference f [x0, x1]. We have already mentioned that

lim
ε→0

f [2, 2 + ε]

exists and equals f ′(2). However, it is not generally true that

lim
x0,x1→2

f [x0, x1]

exists even if f ′(2) exists: indeed, f [x0, x1] is the slope of the secant line of f at
x = x0 and x = x1; it is not hard to see that if f ′ is discontinuous at x = 2,1 then

1 Here is a standard example of a function, f , whose derivative exists everywhere but is

discontinuous at x = 2: if we define f(2) = 0, and for x 6= 2 we define

f(x) = (x− 2)2 sin
(
1/(x− 2)2

)
,
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the limit

lim
x0,x1→2

f [x0, x1]

does not exist. In this case it impossible to define f [x0, x1] in a way that makes it
a continuous function at x0 = x1 = 2 (although we generally define f [2, 2] = f ′(2)
for reasons mentioned before).

However, the optimistic side to this secant line consideration is the following
easy result.

Theorem 6.1. If f : R → R is differentiable (on all of R), then define f [x0, x0]
to be f ′(x0) for all x0 ∈ R. If f ′ is continuous (on all of R), then f [x0, x1] is
continuous (at all (x0, x1) ∈ R2).

(This theorem speaks of continuity of functions on R2; this knowledge is not a
prerequisite for CPSC 303, and hence I will briefly explain this concept when/if we
cover in in CPSC 303.)

Proof. It suffices to fix (a0, a1) ∈ R2 and to show that

lim
(x0,x1)→(a0,a1)

f [x0, x1] = f [a0, a1].

If a0 6= a1, then for (x0, x1) sufficiently close to (a0, a1) we have x0 6= x1, and
hence

lim
(x0,x1)→(a0,a1)

f [x0, x1] = lim
(x0,x1)→(a0,a1)

f(x1)− f(x0)

x1 − x0
=
f(a1)− f(a0)

a1 − a0
= f [a0, a1].

Otherwise a0 = a1; for x0 = x1 we have

f [x0, x1] = f [x0, x0] = f ′(x0),

and for x0 6= x1, the Mean-Value theorem implies

f [x0, x1] = f ′(ξ)

for some ξ between x0 and x1. It follows that∣∣f [x0, x1]− f [a0, a0]
∣∣ ≤ ∣∣f ′(ξ)− f ′(a0)

∣∣,
and so for |x0 − a0| ≤ ε and |x1 − a0| ≤ ε we have∣∣f [x0, x1]− f [a0, a0]

∣∣ ≤ max
|ξ−a0|≤ε

∣∣f ′(ξ)− f ′(a0)
∣∣.

Since f ′ is continuous, it follows that

lim
(x0,x1)→(a0,a1)

f [x0, x1] = f [a0, a1].

�

then we have f ′(2) = 0 (essentially because f is bounded above by (x−2)2 and below by −(x−2)2,
and these two functions osculate at x = 2 (i.e., ±(x − 2)2 agree to order two at x = 2). On the
other hand, for x 6= 2 we have

f ′(x) = 2(x− 2) sin
(
1/(x− 2)2

)
+
−2

x− 2
cos

(
1/(x− 2)2

)
,

which is not even bounded as x→ 2.
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Ideally one wants that f [x0, . . . , xn] not merely be continuous in x0, . . . , xn, but
also differentiable, or infinitly-differentiable, etc. At present I don’t know a reference
where such issues are studied in a simple fashion. Such issues are discussed starting
in Section 7 of de Boor’s survey, “Divided Differences” (available at https://

arxiv.org/abs/math/0502036) which I recommend. This survey is more technical
than [A&G] and requires some math on the level of UBC’s Math 320: for example,
you need to know that if M : X → Rn×n is a continuous map from a topological
space, X (e.g., X = Rm for some m), to the space of real n × n matrices, then if
M(x) is invertible for all x ∈ X, then the map

x 7→
(
M(x)

)−1 ∈ Rn×n

is also continuous for all x (in view of the formula M−1(I −A)−1 = M−1(I +A+
A2 + · · · ) for ‖A‖ < 1 in any matrix norm).

Exercises

(1) Describe does the following MATLAB code does:

clear

i = -10:1:15

x = i/10

y = x.*x

z = x.^3

xpi = x * pi

f = sin(x * pi)

t = -1 : 0.1 : 1

and explain or summarize the error message(s) that you get when you type

x*x

x^3

(i.e., don’t just copy the error message down word for word.)

(2) In this exercise we consider

f(x) = sin(x)

Taylor’s theorem with remainder implies that for every x ∈ [−1, 1] we have
(the Taylor expansion)

f(x) = sin(x) = x− x3/3! + x5/5!−R7(x),

where R7(x) is a function of x such that for every x ∈ [−1, 1] there is a
ξ ∈ [−1, 1] such that

R7(x) = x7 cos(ξ)/7!

(a) Explain why for any x ∈ [−1, 1] we have

|R7(x)| ≤ 1/7! = .00019841 . . .

https://arxiv.org/abs/math/0502036
https://arxiv.org/abs/math/0502036
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(b) What is the largest value of |R7(x)| where R7(x) is given as above,
with

R7(x) = sin(x)− x+ x3/3!− x5/5!

for x = i/1000 and i = −1000, . . . , 1000? Check this by running the
MATLAB code:

clear

x = ( -1000:1000 ) / 1000

abs_r7=abs( sin(x)-x+x.^3/6-x.^5/120)

max( abs_r7 )

How close is this maximum absolute value of the error to the upper
bound on |R7(x)| in part (a)?

(3) The Chebyshev points on (−1, 1) are defined (see Section 10.6 of [A&G])
for each positive integer n as the n+ 1 points x0, . . . , xn.

xi = cos

(
(2i+ 1)π

2(n+ 1)

)
, i = 0, 1, . . . , n

(a) Generate the n = 5 values of x0, . . . , x5 using the code:

clear

vi = 0:5

cheb = cos( ( 2 * vi + 1 ) * pi / 12 )

(b) For x0, . . . , x5 being the Chebyshev points above (with n = 5), find
the maximum absolute value of

v(x) = (x− x0)(x− x1) . . . (x− x5)

for x = i/1000 with i = −1000,−999, . . . , 999, 1000 using MATLAB.
You could do this by adding the code

v = 1:2001

for i= 1 : 2001 , v(i) = prod( (i-1001)/1000 -cheb); end

max(abs(v))

(c) Based on (1), if we interpolate f(x) = sin(x) at x0, . . . , x5, show that
the error in this interpolation at any x ∈ R is at most∣∣∣∣ (x− x0)(x− x1) . . . (x− x5)

6!

∣∣∣∣
in absolute value. [Hint: f (6)(x) = − sin(x).]

(d) Use the bound in part (c) and the experiment in part (b), give an
upper bound on the largest error in interpolation for x = i/1000 with
i = −1000,−999, . . . , 1000.

(e) Then interpoloate sin(x) at the Chebyshev point x0, . . . , x5, and
find the error in interpolation over all x = i/1000 with i =
−1000,−999, . . . , 1000.
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sin_cheb = sin(cheb)

p = polyfit( cheb, sin_cheb, 5) % this returns the coefficients c0,...,c5

x = -1 : 0.001 : 1

y = polyval(p,x)

sinx = sin(x)

max( abs( y - sinx ) )

(4) In this exercise we will specify 6 real numbers x0, . . . , x5 and consider the
largest absolute value of the polynomial

v(x) = (x− x0)(x− x1) . . . (x− x5)

over all x ∈ [−1, 1] (i.e., all x ∈ R with −1 ≤ x ≤ 1).
(a) If x0 = x1 = . . . = x5 = 0, at which x ∈ [−1, 1] does v(x) attain

its maximum value, and what is this value? Just give the answer;
it should be clear once you compute v(x). [Hint: In this case,
v(x) = x6.]

(b) Let x0 = x1 = −1, x2 = x3 = 0, and x4 = x5 = 1. Using calculus, find
the (exact) value(s) of x ∈ [−1, 1] at which v(x) attains its maximum
absolute value. [Hint: v(x) = (x3 − x)2; you need to check v(x) at
the endpoints ±1, and then check the value of v(x) for the values of x
where v′(x) = 0.] What is the maximum absolute value of v(x), both
exactly and as a decimal to 4 digits?

(c) If x0, . . . , x5 are the n = 5 Chebyshev points of Problem 3, approx-
imate the maximum absolute value of v(x) by checking the values
x = i/1000 and i = −1000,−999, . . . , 1000. [If you have done Prob-
lem 3 above, then you have already found this value.]

(d) How close is your value in part (c) to the 1/32? Type max(abs(v))

- 1/32 to find out. [In Section 10.6 we will learn that the maximum
absolute value of v(x) over all x = [−1, 1] is (in exact arithmetic) 1/32.]

(e) By what factor is the maximum absolute value in part (b) an improve-
ment over part (a)? And, similarly, for part (c) over part (b)?

(5) More exercises to follow.

Department of Computer Science, University of British Columbia, Vancouver, BC
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