
MATH 523 NOTES ON FORMULA AND CIRCUIT LOWER

BOUNDS

JOEL FRIEDMAN

Abstract. These are my notes for Math 523 (equally well for a complexity

theory course) on formula and circuit lower bounds. As of January 2014,
there has been some recent progress on algebraic lower bounds, namely some

progress on “Permanent Versus Determinant.” Furthermore, the Mulmuley-
Sohoni approach to complexity theory (which they call “Geometric Complexity

Theory”) is still a possible approach to lower bounds in complexity theory.

Here I will outline some of the basic results; details will be given in class
and/or may be found in the text by Arora and Barak. These notes are a work

in progress; use at your own risk: the material is probably incomplete, and

may contain errors, jokes, inaccuracies, and worse. For example, at this point
there are almost no references given, although some of this can be found in

Arora and Barak. All of this material will be covered in class.

0. Basic Definitions

The idea of finding lower bounds on circuit/formula size/depth is older than the
formalization of the question P versus NP. Let us summarize the results.

A Boolean formula is a formula involving (Boolean) variables x1, . . . , xn, paren-
theses, and the logical operations ∨, ∧, and ¬. We will alternatively view a Boolean
formula as a rooted tree, whose leaves are variables (sometimes variables and their
negations), and whose interior vertices are operations. The size of the formula is
usually defined to be the number of variables (i.e., number of leaves), or this num-
ber minus one. The depth of a formula is the maximum length of a path from the
root to a leaf. We may propogate the negations to the leaves (via De Morgan’s
laws), so that the formula has leaves x1, . . . , xn,¬x1, . . . ,¬xn and is a binary tree
whose interior vertices are labelled either ∨ or ∧.

An algebraic formula over a ring or field is defined similarly, where the logical
operations ∨,∧,¬ are replaced with +,× (we sometimes allow − and/or ÷), and
the leaves may also contain any element of the field or ring. The notions of size
and depth are defined similarly.

Any Boolean formula can be expressed as an algebraic formula over the field
Z/2Z.

A Boolean circuit is a directed acyclic graph (DAG) with a unique target, whose
sources are variables (and sometimes their negations), and whose other vertices
are the above mentioned Boolean operations. The fundamental difference between
circuits and formulas is that the circuits allow an arbitrary out-degree to their
vertices, unlike a formula where the out-degree is always one. The size of a circuit

Date: Wednesday 12th February, 2014, at 09:03(remove currenttime eventually).
Research supported in part by an NSERC grant.

1



2 JOEL FRIEDMAN

is the total number of vertices of the DAG, and its depth is the maximum length of
a path from the (unique) target to any of its sources.

An algebraic circuit is defined similarly.

1. Motivation

Probably the most compelling motivation for studying formulas and circuits is
the following remark.

Remark 1.1. Consider any function (language) as a function f : {0, 1}∗ → {0, 1}. If
for any positive integer c one can show that for sufficiently large n we have that the
restriction of f to {0, 1}n requires circuits of size larger than nc, then f does not lie
in P. In particular, if this holds of some function (language) in NP, then P 6= NP.

The following is usually referred to as the trivial bound.

Remark 1.2. If f = f(x1, . . . , xn) merely depends on all of its variables, then the
size of a formula or circuit to compute f is at least n, and its depth at least log2(n).

Remark 1.3. There is a constant C such that most Boolean functions on n variables
cannot be computed with a circuit of size at most C2n/n, and therefore of depth
at most n+ log2(C/n).

The above remark follows by a routine (and easy) calculation showing that the
total number of circuits of size at most 2n/Cn and showing that it is less than one
half of the number of Boolean functions on n variables, i.e., 22

n

.

Remark 1.4. Any Boolean function on n variables has a formula of size at most
n2n, and of depth at most n+ log2 n.

This above can be done as a disjuction (repeated “or”) of the at most 2n assign-
ments of variables that yield a value 1 (true).

2. Lower Bounds for Boolean Functions

As far as I know, it is known that for numerous functions, including the XOR
function

XOR(x1, . . . , xn) = (x1 + · · ·+ xn) mod 2

its minimal formula size is n3−ε (Hastad, building on many articles beforehand,
method of random restrictions and the “shrinkage exponent”). This method per
se, as other formula size methods (e.g., Neciporuk’s Theorem), has no hope of
settling P versus NP.

All other Boolean function (circuit size and depth) lower bounds of which I am
aware prove lower bounds within a constant of the trivial bound. They, too, have
little hope of resolving P versus NP.

3. Remarks on Depth

Remark 3.1. Any circuit of depth d can be “expanded” to get a formula of the
same depth.

Hence the minimum formula depth and circuit depth are essentially the same.
A standard “balancing” argument shows the following theorem.



MATH 523 NOTES ON FORMULA AND CIRCUIT LOWER BOUNDS 3

Theorem 3.2. There is a constant, c ∈ R, such that any Boolean formula of size s
can be “balanced” to yield a formula of depth at most c log s. Similarly for algebraic
formulae.

Proof. Let n be the number of variables of the formula, let m be its size, and let
g(x1, . . . , xn) be the function computed by the formula. Consider the number of
descendant leaves of each interior vertex. Since each interior vertex has at most two
children, there must exist an interior vertex that has between 1/3 and 2/3’s of the
leaves. Choose some such interior vertex, v, and let f(x1, . . . , xn) be the function
computed at v. We have

g(x) = h(x; f),

where h can be expressed as a formula of size at most 1 + 2m/3. But we may also
write

g(x) = (f(x) ∧ h(x; 0)) ∨ (¬f(x) ∧ h(x; 1))

in the Boolean case, or

g(x) = h(x; 0) + f(x)h(x; 1)

in the algebraic case (without the operations of minus and ÷). This means that a
formula of size m can be expressed, by the above procedure, as a formula of depth

2 + τ(2m/3),

where τ(k) denotes the maximum depth required to write a formula of size k. By
recursion, we see that τ(k) is bounded by roughly

2 log3/2(k).

�

It follows that for any Boolean or algebraic function (where the algebraic function
is computed using only + and ×) we have that the following are equivalent to within
a constant factor:

(1) minimum formula depth,
(2) minimum circuit depth (which equals miminum formula depth), and
(3) the logarithm of the miminum formula size.

4. Avoiding Divisions

Generally speaking, it seems easier to study algebraic formulae and circuits be-
cause we have more tools to apply. Usually we only consider formulae/circuits
without allowing the division operation. Let us explain why.

Strassen [Str73] (see also the Mathematical Reviews entry for this article for a
summary) showed that over an infinite field, if L[f ] is the minimum circuit size to
compute a polynomial, f = f(x1, . . . , xn), of degree d (i.e., each monomial of f has
total degree—summing the powers of all variables involved—being at most d) using
the operations +,×, and L(f) is the same using +,×,÷ (minus can be written as
multiplying by the constant −1), then

L(f) ≤ L[f ]4d log2 d.

The essential idea is that if f is any polynomial in x with a non-zero constant term,

f(x) = k1(1 + g(x)),



4 JOEL FRIEDMAN

with g(0) = 0, then we have

1/f = (1/k1)(1− g + g2 − · · · )

as a power series in x. In particular we may replace a division by f with the
evaluation of a power series; if the function to be evaluated is of degree at most
d, then we may truncate this power series by d. Furthermore, since any circuit for
f involving division only divides by a finite number of functions, there is a β =
(β1, . . . , βn) on which all of these functions do not vanish; hence the substitution
xi − βi for xi allows us to replace divisions by multiplication by a power series
as above. By a process of converting all functions computed into homogenous
functions, we can truncate this power series after finitely many terms.

Similarly, one sees that the depth of the circuit increases by a factor of at most
log d by replacing each division by a power series evaluation. Since one is usually
interested in computing functions of n variables whose degree is polynomial in n,
avoiding divisions changes the circuit size by at most a factor of a polynomial in n,
and the depth by at most a factor of log n.

5. Permanent versus Determinant

In Section 16.1 of Arora and Barak the permanent and determinant of an n× n
matrix are defined. It is conjectured that the n×n permanent cannot be written as

an m×m permanent for m ≤ f(n), where f(n) is 2O(logn)2 , or sometimes, 2p(logn)

where p is any polynomial (assuming that F is a field of characteristic different than
two).

For a fixed field (or ring), F , the text defines the classes AlgP/poly (also known
as VP, Valiant’s algebraic analogue of P) and AlgNP/poly (a.k.a. VNP); the
former is the set of sequences of functions fn : Fn → F that are computed by
polynomial sized algebraic circuits (with no divisions), and the latter are those
sequences fn which are of degree bounded by a polynomial in n that can be written
as

fn(x1, . . . , xn) =
∑

e1,...,em−n=0,1

gn(x1, . . . , xn, e1, . . . , em−n),

where m = m(n) is a polynomial in n and gn is in AlgP/poly.
We make the following remarks:

(1) The determinant has a 2O(logn)2 size formula.
(2) Any algebraic formula of size m can be written as a determinant of size

m+ 2 (Valiant, [Val79]); this is easy if we replace m+ 2 with a polynomial
in m.

(3) Most NP-complete problems can be written as a function in VNP, and a
Boolean function with polynomial sized circuits can be written as functions
in NP; hence if we can show P 6= NP by showing that, say, SAT has no
polynomial sized circuits, we also have that VP 6= VNP.

(4) Skyum and Valiant [SV81] defined pF to be those sequences of algebraic
functions with polynomial sized formulae.

(5) the Permanent Versus Determinant Conjecture is an anologue of compar-
ing Boolean functions computable in polynomial size circuits with poly-log
depth (NC) with NP.



MATH 523 NOTES ON FORMULA AND CIRCUIT LOWER BOUNDS 5

References

[Str73] Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202, 1973.
[SV81] Sven Skyum and Leslie G. Valiant. A complexity theory based on boolean algebra. In

FOCS, pages 244–253. IEEE Computer Society, 1981.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the eleventh annual
ACM symposium on Theory of computing, STOC ’79, pages 249–261, New York, NY,

USA, 1979. ACM.

Department of Computer Science, University of British Columbia, Vancouver, BC
V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia,

Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca


