Group Exercise 9 - SVD and Truncated SVD Pre-Reading for Nov 3, 2017

Example 1 The singular value decomposition of

$$
A=\left(\begin{array}{rrr}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12
\end{array}\right)
$$

is given by
$A=U \Sigma V^{T}=\left(\begin{array}{rrrr}0.141 & 0.825 & -0.420 & -0.351 \\ 0.344 & 0.426 & 0.298 & 0.782 \\ 0.547 & 0.028 & 0.664 & -0.509 \\ 0.750 & -0.371 & -0.542 & 0.079\end{array}\right)\left(\begin{array}{rrr}25.5 & 0 & 0 \\ 0 & 1.29 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)\left(\begin{array}{rrr}0.504 & 0.574 & 0.644 \\ -0.761 & -0.057 & 0.646 \\ 0.408 & -0.816 & 0.408\end{array}\right)$.
Thus, we have $\sigma_{1}=25.5, \sigma_{2}=1.29$, and $\sigma_{3}=0$. A singular value of zero indicates that the matrix A is rank-deficient. In general, the rank of a matrix is equal to the number of nonzero singular values, which in this example is two.

The SVD of A can be written as

$$
A=U \Sigma V^{T}=\left(\begin{array}{cc}
U_{1} & U_{2}
\end{array}\right)\binom{\Sigma_{1}}{0} V^{T}
$$

which leads to the economy-size $S V D$ of A

$$
A=U_{1} \Sigma_{1} V^{T}=\left(\begin{array}{rrr}
0.141 & 0.825 & -0.420 \\
0.344 & 0.426 & 0.298 \\
0.547 & 0.028 & 0.664 \\
0.750 & -0.371 & -0.542
\end{array}\right)\left(\begin{array}{rrr}
25.5 & 0 & 0 \\
0 & 1.29 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
0.504 & 0.574 & 0.644 \\
-0.761 & -0.057 & 0.646 \\
0.408 & -0.816 & 0.408
\end{array}\right)
$$

Given

$$
\mathbf{b}=\left(\begin{array}{l}
13 \\
14 \\
15 \\
16
\end{array}\right)
$$

Using Gaussian elimination, we can transform the augmented matrix $(A \mid \mathbf{b})$ to the triangular form

$$
\left(\begin{array}{rrr|r}
1 & 2 & 3 & 13 \\
0 & -3 & -6 & -38 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

so the set of solutions to $A \mathbf{x}=\mathbf{b}$ is

$$
\left\{\left.\binom{\frac{3 t-37}{38-6 t}}{t} \right\rvert\, t \in \mathbb{R}\right\} .
$$

The least squares solution of minimum Euclidean norm is given by

$$
\begin{aligned}
& \mathbf{x}=\sum_{\sigma_{i} \neq 0} \frac{\mathbf{u}_{i}^{T} \mathbf{b}}{\sigma_{i}} \mathbf{v}_{i}=\frac{\mathbf{u}_{1}^{T} \mathbf{b}}{\sigma_{1}} \mathbf{v}_{1}+\frac{\mathbf{u}_{2}^{T} \mathbf{b}}{\sigma_{2}} \mathbf{v}_{2} \\
& =\frac{\left(\begin{array}{llll}
0.141 & 0.344 & 0.547 & 0.750
\end{array}\right)\left(\begin{array}{l}
13 \\
14 \\
15 \\
16
\end{array}\right)}{25.5}\left(\begin{array}{l}
0.504 \\
0.574 \\
0.644
\end{array}\right) \\
& +\frac{\left(\begin{array}{llll}
0.825 & 0.426 & 0.028 & -0.371
\end{array}\right)\left(\begin{array}{l}
13 \\
14 \\
15 \\
16
\end{array}\right)}{1.29}\left(\begin{array}{r}
-0.761 \\
-0.057 \\
0.646
\end{array}\right) \\
& =\left(\begin{array}{r}
-6.0604 \\
0.1108 \\
6.2734
\end{array}\right)
\end{aligned}
$$

Example 2 Consider

$$
A=\left(\begin{array}{ll}
0.913 & 0.659 \\
0.780 & 0.563 \\
0.457 & 0.330
\end{array}\right)
$$

whose columns are nearly linearly dependent. The singular value decomposition of A is given by

$$
A=U \Sigma V^{T}=\left(\begin{array}{rrr}
0.71058 & -0.26631 & -0.65127 \\
0.60707 & -0.23592 & 0.75882 \\
0.35573 & 0.93457 & 0.00597
\end{array}\right)\left(\begin{array}{rr}
1.58460 & 0 \\
0 & 0.00011 \\
0 & 0
\end{array}\right)\left(\begin{array}{rr}
0.811083 & 0.58528 \\
-0.58528 & 0.81083
\end{array}\right) .
$$

Using TSVD, we set the singular values below the cutoff tolerance of about 10^{-4} to 0 . So, we set $\sigma_{2}=0$, thus, the effective rank of A is 1 . We obtain the approximate matrix

$$
A_{1}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}=1.58460\left(\begin{array}{l}
0.71058 \\
0.60707 \\
0.35573
\end{array}\right)\left(\begin{array}{ll}
0.811083 & 0.58528
\end{array}\right)=\left(\begin{array}{ll}
0.91298 & 0.65902 \\
0.77999 & 0.56302 \\
0.45706 & 0.32992
\end{array}\right),
$$

which is an extremely close approximation to the original matrix A, since σ_{2} is so tiny that the term associated with it makes almost no contribution to the sum. According to the Best Lower Rank Approximation Theorem, $\left\|A-A_{1}\right\|_{2}=\sigma_{2}=0.00011$.

Example 3 Consider $A \in \mathbb{R}^{m \times n}$ with $m>n=\operatorname{rank}(A)$. We can use the $S V D$ of A to show that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right):$
$A=U \Sigma V^{T}$ with $\Sigma=\left(\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ \hline \mathbf{0} & \cdots & \mathbf{0}\end{array}\right)$. The rank of A is the number of nonzero singular values, which is n. If $A=U \Sigma V^{T}$ is an $S V D$ of A, then $A^{T}=V \Sigma^{T} U^{T}$ is an $S V D$ of A^{T} with $\Sigma^{T}=$ $\left(\begin{array}{ccc|c}\sigma_{1} & & & \mathbf{0}^{T} \\ & \ddots & & \vdots \\ & & \sigma_{n} & \mathbf{0}^{T}\end{array}\right)$. Therefore, A and A^{T} have the same singular values. Hence $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{T}\right)$.

