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Example 1 The singular value decomposition of

A =


1 2 3
4 5 6
7 8 9

10 11 12


is given by

A = UΣV T =


0.141 0.825 −0.420 −0.351
0.344 0.426 0.298 0.782
0.547 0.028 0.664 −0.509
0.750 −0.371 −0.542 0.079




25.5 0 0
0 1.29 0
0 0 0
0 0 0


 0.504 0.574 0.644
−0.761 −0.057 0.646

0.408 −0.816 0.408

 .

Thus, we have σ1 = 25.5, σ2 = 1.29, and σ3 = 0. A singular value of zero indicates that the matrix
A is rank-deficient. In general, the rank of a matrix is equal to the number of nonzero singular
values, which in this example is two.

The SVD of A can be written as

A = UΣV T =
(
U1 U2

)( Σ1

0

)
V T ,

which leads to the economy-size SVD of A

A = U1Σ1V
T =


0.141 0.825 −0.420
0.344 0.426 0.298
0.547 0.028 0.664
0.750 −0.371 −0.542


 25.5 0 0

0 1.29 0
0 0 0

 0.504 0.574 0.644
−0.761 −0.057 0.646

0.408 −0.816 0.408

 .

Given

b =


13
14
15
16

 .

Using Gaussian elimination, we can transform the augmented matrix (A|b) to the triangular form
1 2 3 13
0 −3 −6 −38
0 0 0 0
0 0 0 0

 ,
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so the set of solutions to Ax = b is 
 3t−37

3
38−6t

3
t

∣∣∣∣ t ∈ R

 .

The least squares solution of minimum Euclidean norm is given by

x =
∑
σi 6=0

uTi b

σi
vi =

uT1 b

σ1
v1 +

uT2 b

σ2
v2

=

(
0.141 0.344 0.547 0.750

)
13
14
15
16


25.5

 0.504
0.574
0.644



+

(
0.825 0.426 0.028 −0.371

)
13
14
15
16


1.29

 −0.761
−0.057

0.646


=

 −6.0604
0.1108
6.2734


Example 2 Consider

A =

 0.913 0.659
0.780 0.563
0.457 0.330

 ,

whose columns are nearly linearly dependent. The singular value decomposition of A is given by

A = UΣV T =

 0.71058 −0.26631 −0.65127
0.60707 −0.23592 0.75882
0.35573 0.93457 0.00597

 1.58460 0
0 0.00011
0 0

( 0.811083 0.58528
−0.58528 0.81083

)
.

Using TSVD, we set the singular values below the cutoff tolerance of about 10−4 to 0. So, we set
σ2 = 0, thus, the effective rank of A is 1. We obtain the approximate matrix

A1 = σ1u1v
T
1 = 1.58460

 0.71058
0.60707
0.35573

( 0.811083 0.58528
)

=

 0.91298 0.65902
0.77999 0.56302
0.45706 0.32992

 ,

which is an extremely close approximation to the original matrix A, since σ2 is so tiny that the
term associated with it makes almost no contribution to the sum. According to the Best Lower Rank
Approximation Theorem, ‖A−A1‖2 = σ2 = 0.00011.
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Example 3 Consider A ∈ Rm×n with m > n = rank(A). We can use the SVD of A to show that
rank(A) = rank(AT ):

A = UΣV T with Σ =


σ1

. . .

σn
0 · · · 0

. The rank of A is the number of nonzero singular values,

which is n. If A = UΣV T is an SVD of A, then AT = V ΣTUT is an SVD of AT with ΣT = σ1 0T

. . .
...

σn 0T

. Therefore, A and AT have the same singular values. Hence rank(A) =

rank(AT ).
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