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6.3 Multigrid Methods

The Jacobi and Gauss-Seidel iterations produce smooth errors. The error vector e
has its high frequencies nearly removed in a few iterations. But low frequencies are
reduced very slowly. Convergence requires O(N 2) iterations—which can be unaccept-
able. The extremely effective multigrid idea is to change to a coarser grid, on which
“smooth becomes rough” and low frequencies act like higher frequencies.

On that coarser grid a big piece of the error is removable. We iterate only a few

times before changing from fine to coarse and coarse to fine. The remarkable result
is that multigrid can solve many sparse and realistic systems to high accuracy in a
fixed number of iterations, not growing with n.

Multigrid is especially successful for symmetric systems. The key new ingredients
are the (rectangular !) matrices R and I that change grids:

1. A restriction matrix R transfers vectors from the fine grid to the coarse grid.

2. The return step to the fine grid is by an interpolation matrix I = Ih
2h.

3. The original matrix Ah on the fine grid is approximated by A2h = RAhI on
the coarse grid. You will see how this A2h is smaller and easier and faster than
Ah. I will start with interpolation (a 7 by 3 matrix I that takes 3 v’s to 7 u’s):

Interpolation Iv = u

u on the fine (h) grid from

v on the coarse (2h) grid

values are the u’s.
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This example has h = 1
8

on the interval 0 ≤ x ≤ 1 with zero boundary conditions.
The seven interior values are the u’s. The grid with 2h = 1

4
has three interior v’s.

Notice that u2, u4, u6 from rows 2, 4, 6 are the same as v1, v2, v3 ! Those coarse grid
values vj are just moved to the fine grid at the points x = 1

4
, 2

4
, 3

4
. The in-between

values u1, u3, u5, u7 on the fine grid are coming from linear interpolation between
0, v1, v2, v3, 0:

Linear interpolation in rows 1, 3, 5, 7 u2j+1 =
1

2
(vj + vj+1) . (2)

The odd-numbered rows of the interpolation matrix have entries 1
2

and 1
2
. We almost

always use grid spacings h, 2h, 4h, . . . with the convenient ratio 2. Other matrices I
are possible, but linear interpolation is easy and effective. Figure 6.10a shows the
new values u2j+1 (open circles) between the transferred values u2j = vj (solid circles).
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Figure 6.10: Interpolation to the h grid (7 u’s). Restriction to the 2h grid (3 v’s).

When the v’s represent smooth errors on the coarse grid (because Jacobi or Gauss-
Seidel has been applied on that grid), interpolation gives a good approximation to
the errors on the fine grid. A practical code can use 8 or 10 grids.

The second matrix we need is a restriction matrix R2h
h

. It transfers u on a
fine grid to v on a coarse grid. One possibility is the one-zero “injection matrix” that
simply copies v from the values of u at the same points on the fine grid. This ignores
the odd-numbered fine grid values u2j+1. Another possibility (which we adopt) is the
full weighting operator R that comes from transposing Ih

2h.

Fine grid h to coarse grid 2h by a restriction matrix R2h
h

= 1

2
(Ih

2h
)T

Full weighting Ru = v

Fine grid u to coarse grid v
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The effect of this restriction matrix is shown in Figure 6.10b. We intentionally chose
the special case in which uj = sin(2jπ/8) on the fine grid (open circles). Then v on
the coarse grid (dark circles) is also a pure sine vector. But the frequency is doubled

(a full cycle in 4 steps). So a smooth oscillation on the fine grid becomes “half as
smooth” on the coarse grid, which is the effect we wanted.

Interpolation and Restriction in Two Dimensions

Coarse grid to fine grid in two dimensions from bilinear interpolation: Start
with values vi,j on a square or rectangular coarse grid. Interpolate to fill in ui,j by a
sweep (interpolation) in one direction followed by a sweep in the other direction. We
could allow two spacings hx and hy, but one meshwidth h is easier to visualize. A
horizontal sweep along row i of the coarse grid (which is row 2i of the fine grid) will
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fill in values of u at odd-numbered columns 2j + 1 of the fine grid:

Horizontal sweep u2i,2j = vi,j and u2i,2j+1 =
1

2
(vi,j + vi,j+1) as in 1D. (4)

Now sweep vertically, up each column of the fine grid. Interpolation will keep those
values (4) on even-numbered rows 2i. It will average those values to find u = I2Dv
on the fine-grid odd-numbered rows 2i + 1:

Vertical sweep

Averages of (4)

u2i+1,2j = (vi,j + vi+1,j)/2

u2i+1,2j+1 = (vi,j + vi+1,j + vi,j+1 + vi+1,j+1)/4 .
(5)

The entries in the tall thin coarse-to-fine interpolation matrix I2D are 1, 1
2
, and 1

4
.

The full weighting fine-to-coarse restriction operator R2D is the transpose I2DT,
multiplied by 1

4
. That factor is needed (like 1

2
in one dimension) so that a constant

vector of 1’s will be restricted to a constant vector of 1’s. (The entries along each row
of the wide matrix R add to 1.) This restriction matrix has entries 1

4
, 1

8
, and 1

16
and

each coarse-grid value v is a weighted average of nine fine-grid values u:

Restriction matrix R = 1

4
IT

Row i, j of R produces vi,j

vi,j uses u2i,2j and 8 neighbors

The nine weights add to 1

1/161/16

1/8 1/8
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You can see how a sweep along each row with weights 1
4
, 1

2
, 1

4
, followed by a sweep

down each column, gives the nine coefficients in that “restriction molecule.” Its
matrix R2D is an example of a tensor product or Kronecker product kron(R, R). A
3 by 7 matrix R in one dimension becomes a 9 by 49 restriction matrix R2D in two
dimensions.

Now we can transfer vectors between grids. We are ready for the geometric

multigrid method, when the geometry is based on spacings h and 2h and 4h. The
idea extends to triangular elements (each triangle splits naturally into four similar
triangles). The geometry can be more complicated than our model on a square.

When the geometry becomes too difficult, or we are just given a matrix, we turn
(in the final paragraph) to algebraic multigrid. This will imitate the multi-scale
idea, but it works directly with Au = b and not with any underlying geometric grid.

A Two-Grid V-Cycle (a v-cycle)

Our first multigrid method only involves two grids. The iterations on each grid can
use Jacobi’s I − D−1A (possibly weighted by ω = 2/3 as in the previous section) or
Gauss-Seidel. For the larger problem on the fine grid, iteration converges slowly to


