Group Exercise 10 - Convergence of Stationary Methods Pre-Reading for Nov 10, 2017

Example 1 The linear system

$$
\begin{align*}
& 10 x_{1}+x_{2}+x_{3}=12, \\
& x_{1}+10 x_{2}+x_{3}=12, \tag{1}\\
& x_{1}+x_{2}+10 x_{3}=12
\end{align*}
$$

has the unique solution \mathbf{x} with entries $x_{1}=x_{2}=x_{3}=1$.

The coefficient matrix of the linear system (1) is

$$
A=\left(\begin{array}{ccc}
10 & 1 & 1 \\
1 & 10 & 1 \\
1 & 1 & 10
\end{array}\right)
$$

Since $\left|a_{i i}\right|=10>2=\sum_{j=1, j \neq i}^{3}\left|a_{i j}\right|$ for $i=1,2,3, A$ is strictly diagonally dominant. Hence, Jacobi and Gauss-Seidel will converge for this matrix regardless of the starting vector $\mathbf{x}^{(0)}$.

Starting from $\mathbf{x}^{(0)}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$, the Jacobi iteration reads

$$
\begin{aligned}
& x_{1}^{(k+1)}=\frac{12-x_{2}^{(k)}-x_{3}^{(k)}}{10}, \\
& x_{2}^{(k+1)}=\frac{12-x_{1}^{(k)}-x_{3}^{(k)}}{10}, \\
& x_{3}^{(k+1)}=\frac{12-x_{1}^{(k)}-x_{2}^{(k)}}{10},
\end{aligned}
$$

for $k=0,1, \ldots$. We perform two iterations and obtain

$$
\begin{array}{ll}
x_{1}^{(1)}=\frac{6}{5}=1.2, & x_{1}^{(2)}=\frac{24}{25}=0.96 \\
x_{2}^{(1)}=\frac{6}{5}=1.2, & x_{2}^{(2)}=\frac{24}{25}=0.96 \\
x_{3}^{(1)}=\frac{6}{5}=1.2, & x_{3}^{(2)}=\frac{24}{25}=0.96
\end{array}
$$

The l_{1}-error norm in the approximated solution $\mathbf{x}^{(2)}$ is

$$
\left\|\mathrm{x}-\mathbf{x}^{(2)}\right\|_{1}=\sum_{i=1}^{3}\left|x_{i}-x_{i}^{(2)}\right|=3|1-0.96|=0.12
$$

Starting from $\mathbf{x}^{(0)}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$, the Gauss-Seidel iteration reads

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{12-x_{2}^{(k)}-x_{3}^{(k)}}{10}, \\
x_{2}^{(k+1)} & =\frac{12-x_{1}^{(k+1)}-x_{3}^{(k)}}{10}, \\
x_{3}^{(k+1)} & =\frac{12-x_{1}^{(k+1)}-x_{2}^{(k+1)}}{10},
\end{aligned}
$$

for $k=0,1, \ldots$. We perform two iterations and obtain

$$
\begin{array}{ll}
x_{1}^{(1)}=\frac{6}{5}=1.2, & x_{1}^{(2)}=0.9948 \\
x_{2}^{(1)}=\frac{27}{25}=1.08, & x_{2}^{(2)}=1.00332 \\
x_{3}^{(1)}=\frac{243}{250}=0.972, & x_{3}^{(2)}=1.000188
\end{array}
$$

The l_{1}-error norm in the approximated solution $\mathbf{x}^{(2)}$ is

$$
\left\|\mathbf{x}-\mathbf{x}^{(2)}\right\|_{1}=\sum_{i=1}^{3}\left|x_{i}-x_{i}^{(2)}\right|=|1-0.9948|+|1-1.00332|+|1-1.000188|=0.008708
$$

Hence, Gauss-Seidel seems to converge faster.

Example 2 The linear system

$$
\begin{align*}
& 2 x_{1}+5 x_{2}+5 x_{3}=12, \\
& 5 x_{1}+2 x_{2}+5 x_{3}=12, \tag{2}\\
& 5 x_{1}+5 x_{2}+2 x_{3}=12
\end{align*}
$$

has the unique solution \mathbf{x} with entries $x_{1}=x_{2}=x_{3}=1$.

The coefficient matrix of the linear system (2) is

$$
A=\left(\begin{array}{lll}
2 & 5 & 5 \\
5 & 2 & 5 \\
5 & 5 & 2
\end{array}\right)
$$

and we are given its eigenvalues $\lambda_{1}=12, \lambda_{2}=\lambda_{3}=-3$. We denote by \mathbf{v}_{i} the corresponding eigenvector to the eigenvalue λ_{i}.

The Jacobi iteration matrix is given by $T=I-\frac{1}{2} A$ and hence its eigenvalues are obtained from

$$
T \mathbf{v}_{i}=\left(I-\frac{1}{2} A\right) \mathbf{v}_{i}=\mathbf{v}_{i}-\frac{1}{2} \lambda_{i} \mathbf{v}_{i}=\left(1-\frac{1}{2} \lambda_{i}\right) \mathbf{v}_{i} .
$$

So the eigenvalues of T are $\mu_{1}=1-\frac{1}{2} \lambda_{1}=-5, \mu_{2}=1-\frac{1}{2} \lambda_{2}=\frac{5}{2}, \mu_{3}=1-\frac{1}{2} \lambda_{3}=\frac{5}{2}$. Thus, $\rho(T)=\left|\mu_{1}\right|=5>1$ and hence Jacobi will not converge for this matrix.

Starting from $\mathbf{x}^{(0)}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)^{T}$, the Jacobi iteration reads

$$
\begin{aligned}
x_{1}^{(k+1)} & =\frac{12-5 x_{2}^{(k)}-5 x_{3}^{(k)}}{2}, \\
x_{2}^{(k+1)} & =\frac{12-5 x_{1}^{(k)}-5 x_{3}^{(k)}}{2}, \\
x_{3}^{(k+1)} & =\frac{12-5 x_{1}^{(k)}-5 x_{2}^{(k)}}{2},
\end{aligned}
$$

for $k=0,1, \ldots$. We perform two iterations and obtain

$$
\begin{array}{ll}
x_{1}^{(1)}=6, & x_{1}^{(2)}=-24 \\
x_{2}^{(1)}=6, & x_{2}^{(2)}=-24 \\
x_{3}^{(1)}=6, & x_{3}^{(2)}=-24
\end{array}
$$

As expected, Jacobi does not appear to converge.

Example 3 The linear system

$$
\begin{align*}
2 x_{1}-x_{2} & =3, \\
-x_{1}+2 x_{2} & =0 \tag{3}
\end{align*}
$$

has the unique solution \mathbf{x} with entries $x_{1}=2$ and $x_{2}=1$.

The coefficient matrix of the linear system (3) is

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

The Jacobi iteration matrix is given by

$$
T=I-\frac{1}{2} A=\left(\begin{array}{cc}
0 & 1 / 2 \\
1 / 2 & 0
\end{array}\right) .
$$

In order to determine the eigenvalues of T, we need to solve for $\mathbf{v} \neq \mathbf{0}$

$$
T \mathbf{v}=\mu \mathbf{v} \quad \Leftrightarrow \quad(T-\mu I) \mathbf{v}=\mathbf{0}
$$

and hence $\operatorname{det}(T-\mu I)=0$. In Chapter 3 (Review Linear Algebra), we saw how to calculate the determinant of a 2×2 matrix:

$$
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c
$$

Hence

$$
\operatorname{det}(T-\mu I)=\operatorname{det}\left(\begin{array}{cc}
-\mu & 1 / 2 \\
1 / 2 & -\mu
\end{array}\right)=\mu^{2}-\frac{1}{4},
$$

so we need to solve $\mu^{2}-\frac{1}{4}=0$, which gives $\mu_{1,2}= \pm \frac{1}{2}$. Thus, $\rho(T)=\left|\mu_{1}\right|=0.5<1$, and hence Jacobi will converge for A regardless of the starting vector $\mathbf{x}^{(0)}$.

The Gauss-Seidel iteration matrix is given by
$T=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}2 & 0 \\ -1 & 2\end{array}\right)^{-1}\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)-\left(\begin{array}{cc}1 / 2 & 0 \\ 1 / 4 & 1 / 2\end{array}\right)\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)=\left(\begin{array}{cc}0 & 1 / 2 \\ 0 & 1 / 4\end{array}\right)$.

In order to determine the eigenvalues of T, we need to solve $\operatorname{det}(T-\mu I)=0$. Hence

$$
\operatorname{det}(T-\mu I)=\operatorname{det}\left(\begin{array}{cc}
-\mu & 1 / 2 \\
0 & 1 / 4-\mu
\end{array}\right)=-\mu\left(\frac{1}{4}-\mu\right),
$$

so we need to solve $-\mu\left(\frac{1}{4}-\mu\right)=0$, which gives $\mu_{1}=0$ and $\mu_{2}=\frac{1}{4}$. Thus, $\rho(T)=\left|\mu_{2}\right|=0.25<1$, and hence Gauss-Seidel will converge for A regardless of the starting vector $\mathbf{x}^{(0)}$.

The spectral radius of T for Gauss-Seidel is squared that of T of Jacobi, so Gauss-Seidel will converge twice as fast.

