270

Chapter 6: Optimization

where Ani, is the smallest eigenvalue of Hy(x*). That the sensitivity of the solu-
tion &* depends on the Hessian matrix Hy(x*) is not surprising, since this matrix
determines the shape of the contours (level sets) of f near x*. If Hy(x*) is ill-
conditioned, then the contours of f will be relatively long and thin along some
directions (namely eigenvectors of Hy(x*) corresponding to relatively small eigen-
values), and the solution x* will be highly sensitive, and the value of f correspond-
ingly insensitive, to perturbations in those directions.

Analyzing the sensitivity of a solution to a constrained optimization problem
is significantly more complicated, and we will merely highlight the main issues.
For an equality-constrained problem, min f(z) subject to g(x) = o, the error in
the solution can be resolved into two components, one parallel to the constraint
surface and the other orthogonal to the constraint surface. The sensitivity of the
component parallel to the constraints depends on the conditioning of the projected
Hessian matrix Z7 B(x*,A*)Z (see Section 6.2.3), much as in the unconstrained
case just considered. The sensitivity of the component orthogonal to the constraints
depends on the magnitudes of the Lagrange multipliers, which in turn depend on
the conditioning of the Jacobian matrix Jg (x*) of the constraint function g. In
particular, the larger a given Lagrange multiplier, the more influential the corre-
sponding constraint is on the solution. If the Jacobian matrix J, gT (z*) is nearly rank
deficient, then the Lagrange multipliers will be highly sensitive and the resulting
solution will likely be inaccurate.

6.4 Optimization in One Dimension

We begin with methods for optimization in one dimension, which is an important
problem in its own right, and will also be a key subproblem in many algorithms for
optimization in higher dimensions. First, we need a way of bracketing a minimum
in an interval, analogous to the way we used a sign change for bracketing solutions
to nonlinear equations in one dimension. A function f:R — R is unimodal on an
interval [a, b] if there is a unique value z* € [a,b] such that f(z*) is the minimum
of f on [a,b], and for any z;,z2 € [a,b] with z; < z2,

z2 < z* implies f(z1) > f(z2) and x; > z* implies f(z1) < f(z2).

Thus, f(x) is strictly decreasing for z < z* and strictly increasing for > z*.
The significance of this property is that it will enable us to refine an interval con-
taining a solution by computing sample values of the function within the interval
and discarding portions of the interval according to the function values obtained,
analogous to bisection for solving nonlinear equations.

6.4.1 Golden Section Search

Suppose f is unimodal on [a,b], and let z1,z2 € [a,b] with z; < zo. Comparing
the function values f(z;) and f(z3) and using the unimodality property allows us
to discard a subinterval, either (z9,b] or [a,z1), and know that the minimum of
the function lies within the remaining subinterval. In particular, if f(z;) < f(z2),

6.4 Optimization in One Dimension

271

then the minimum cannot lie in the interval (z3,b], and if f(z;) > f(z2), then
the minimum cannot lie in the interval [a,z;). Thus, we are left with a shorter
interval, either [a,z3] or [z1,b], within which we already have one function value,
either f(z1) or f(z2), respectively. Hence, we will need to compute only one new
function evaluation to repeat this process.

To make consistent progress in reducing the length of the interval containing the
minimum, each new pair of points should have the same relative positions within
the new interval that the previous pair had within the previous interval. Such an
arrangement will enable us to reduce the length of the interval by a fixed fraction
at each iteration, much as we reduced the length by half at each iteration of the
bisection method for computing a zero of a function.

To accomplish this objective, we choose the relative positions of the two points
within the current interval to be 7 and 1 — 7, where 72 = 1 — 7, so that 7 =
(vV5—1)/2 ~ 0.618 and 1—7 ~ 0.382. With this choice, no matter which subinterval
is retained, its length will be 7 relative to the previous interval, and the interior point
retained will be at position either 7 or 1 — 7 relative to the new interval. Thus, we
will need to compute only one new function value, at the complementary point, to
continue the iteration. This choice of sample points is called golden section search,
after the “golden ratio,” 1+ v/5/2 ~ 1.618, of antiquity. The complete procedure
is shown in Algorithm 6.1, for which the initial input is a function f, an interval
[a,b] on which f is unimodal, and an error tolerance tol. For a unimodal function,
golden section search is safe but slowly convergent. Specifically, its convergence
rate is linear, with » = 1 and C =~ 0.618.

Algorithm 6.1 Golden Section Search

= (5-1)/2
z1=a+(1-7)b-a)

| |
= f(l'l) | |
ze=a+7(b—a) I [
f2 = f(x2) ! '
while ((b —a) > tol) do : :
if (f1 > f2) then ! L L]
a=mz a 1 T2 b
Ty = XT9g
fi=f
ro=a+7(b—a) T|
fa = f(z2) a 1 T2 b
else
b=z, T T
Ty =121 t i | {
fa=fi a 1 T2 b
z1=a+(1-7)(b-a) Loy
fi= f(z) 1-7
end l I |
a T T2 b

end

272 Chapter 6: Optimization

Example 6.8 Golden Section Search. We illustrate golden section search by
using it to minimize the function

f(z) =05—ze .

Starting with the initial interval [0, 2], we evaluate the function at points z; = 0.764
and zo = 1.236, obtaining f(z;) = 0.074 and f(zz) = 0.232. Because f(z1) <
f(z2), we know that the minimum must lie in the interval [a, 22|, and thus we may
replace b by x5 and repeat the process. The first iteration is depicted in Fig. 6.6,
and the full sequence of iterates is given next.

1 f(z1) T2 f(z2)
0.763932 0.073809 1.236068 0.231775
0.472136 0.122204 0.763932 0.073809
0.763932 0.073809 0.944272 0.112868
0.652476 0.073740 0.763932 0.073809
0.583592 0.084857 0.652476 0.073740
0.652476 0.073740 0.695048 0.071243
0.695048 0.071243 0.721360 0.071291
0.678787 0.071815 0.695048 0.071243
0.695048 0.071243 0.705098 0.071122
0.705098 0.071122 0.711310 0.071133
0.701260 0.071147 0.705098 0.071122
0.705098 0.071122 0.707471 0.071118
0.707471 0.071118 0.708937 0.071121
0.706565 0.071118 0.707471 0.071118

Note that the function values are relatively insensitive near the minimum, as ex-
pected (see Section 6.3).

0 T T2 2

Figure 6.6: First iteration of golden section search for example problem.

Although unimodality plays a role in one-dimensional optimization similar to
that played by a sign change in root finding, there are important practical differ-
ences. A sign change brackets a root of an equation regardless of how large the
bracketing interval may be. The same is true of unimodality, but in practice most

6.4 Optimization in One Dimension

273

functions cannot be expected to be unimodal unless both endpoints of the interval
are reasonably near a minimum, or unless the function has a special property such
as convexity. Thus, more trial and error may be required to find a suitable starting
interval for one-dimensional optimization than is typically required for root find-
ing. In practice, one might simply search for three points such that the value of
the objective function is greater at the two outer points than at the intermediate

“point. Although golden section search always converges, it is not guaranteed to
find the global minimum, or even a local minimum, unless the objective function is
unimodal on the starting interval.

6.4.2 Successive Parabolic Interpolation

As we have seen, golden section search for optimization is analogous in a number
of ways to bisection for solving a nonlinear equation; in particular, golden section
search makes no use of the function values other than to compare them. As with
nonlinear equations, faster methods can be obtained by making greater use of the
function values, such as fitting them with some simpler function. Fitting a straight
line to two points, as in the secant method, is of no value for optimization because
the resulting linear function has no minimum. Instead, we must use a polynomial
of degree at least two.

The simplest example of this approach is successive parabolic interpolation. Ini-
tially, the function f to be minimized is evaluated at three points and a quadratic
polynomial is fit to the three resulting function values. The minimum of the result-
ing parabola, assuming it has one, is then taken as a new approximate minimum of
the function. One of the previous points is then dropped and the process repeated
until convergence. At a given iteration, we have three points, say u, v, and w,
with corresponding function values f,, fy, and f,, respectively, where v is the best
approximate minimum thus far. The minimum of the parabola interpolating the
" three function values is given by v + p/q, where

p = i(v_u)z(fv“fw)_(v_w)2(fv—fu)v
q = ;2((1)_“)(1%_fw)"(v—w)(fv_fu))'

We now replace u by w, w by v, and v by the new approximate minimum v+p/q and
repeat until convergence. This process is illustrated in Fig. 6.7. Successive parabolic
interpolation is not guaranteed to converge, but under normal circumstances if
started close enough to a minimum it converges superlinearly with convergence
rate r &~ 1.324.

Example 6.9 Successive Parabolic Interpolation. We illustrate successive
parabolic interpolation by using it to minimize the function from Example 6.8,

flx)=05— ze .

We evaluate the function at three points, say, zo = 0, 1 = 1.2, and z2 = 0.6,
obtaining f(x¢) = 0.5, f(x1) = 0.216, f(z2) = 0.081. We fit a parabola to these
three points and take its minimizer, £z = 0.754, to be the next approximation to

