
INFINITY 2004 Preliminary Version

A New Approach to Upward-Closed Set
Backward Reachability Analysis

Jesse Bingham 1,2,3

Department of Computer Science
University of British Columbia

Vancouver, Canada

Abstract

In this paper we present a new framework for computing the backward reachability
from an upward-closed set in a class of parameterized (i.e. infinite state) systems
that includes broadcast protocols and petri nets. In contrast to the standard ap-
proach, which performs a single least fixpoint computation, we consecutively com-
pute the finite state least fixpoint for constituents of increasing size, which allows us
to employ binary decision diagram (BDD)-based symbolic model checking. In sup-
port of this framework, we prove necessary and sufficient conditions for convergence
and intersection with the initial states, and provide an algorithm that uses BDDs as
the underlying data structure. We give experimental results that demonstrate the
existence of a petri net for which our algorithm is an order of magnitude faster than
the standard approach, and speculate properties that might suggest which approach
to apply.

Key words: broadcast protocol, petri net, parameterized model
checking, well-structured transition system

1 Introduction

The successes of finite state model checking techniques have motivated much
research on automatic verification of infinite state systems. Recent works
have investigated a class of infinite systems called well-structured transition
systems and provided several positive decidability results [1,8,9]. Examples of
well-structured transition systems include: basic process algebra, lossy chan-
nel systems, timed automata, petri nets, and various species of parameterized

1 This version corrects a minor error in Fig. 1 that appeared in the INFINITY 04 proceed-
ings.
2 Thanks to Armin Biere, Anne Condon, Giorgio Delzanno, Pierre Ganty, Alan J. Hu, and
Laurent Van Begin
3 Email: jbingham@cs.ubc.ca

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bingham

finite state systems. An important class of decidable problems, with variants
variously called safety property verification, control state reachability, and cov-
erability, ask if a specified set of target (i.e. violating) states is reachable from
any of the designated initial states.

The standard approach to solving these problems is based on backward
reachability analysis, in which, starting from the set of violating states, preim-
ages are iteratively computed until a fixpoint is reached. For well-structured
systems, convergence is guaranteed, and an abstract algorithm is given in
several papers on the topic [1,8,9]; we will call this the standard algorithm.
Necessary for practical implementation of the standard algorithm is an effi-
cient representation of so-called upward-closed sets. Delzanno et al. propose
using covering sharing trees (CST) for this purpose [5]. One drawback of this
technique is that checking for convergence is co-NP hard in the size of the
involved CSTs.

In this paper we propose an alternative to the standard algorithm. We
focus on a generalization of broadcast protocols [8,7]. A broadcast protocol
represents the composition of an unbounded number of identical finite state
processes that communicate in certain ways. The infinite state space arises
because a broadcast protocol consists of an infinite family of systems; for each
positive n the system of size n involves the composition of n processes. The
paramount difference between our approach and the standard is that rather
than compute the transitive preimage of the entire set of violating states in
one fell swoop, we iteratively compute the backward reachability set for con-
stituent systems of increasing size, until we reach a certain convergence con-
dition. Since the constituent systems are each finite state, we can leverage
well-known finite state symbolic model checking [4] and binary decision dia-
gram (BDD) [3] techniques. A primary advantage of our approach is that the
necessary convergence checks can be done efficiently. A possible disadvantage
is that in some sense we undo a symmetry reduction inherent in the standard
approach.

That our procedure eventually covers all elements of the transitive preim-
age follows trivially from the theory of well-structured transition systems.
However, determining when we have reached full coverage is unobvious 4 . A
key result in this paper is a theorem that gives us a necessary and sufficient
condition for detecting this convergence. Through our experimental results we
exhibit the existence of a family of petri nets for which our algorithm is two
orders of magnitude faster than a state-of-the-art implementation of the stan-
dard approach. We emphasize that our approach does not always outperform
the standard approach, but there are examples for which each is superior. In
our discussion of Sect. 5 we speculate the system properties that might suggest
which technique to apply.

4 In particular, convergence between sizes n and n + 1 is in general insufficient for full
coverage [2].

2

Bingham

The paper is organized as follows. Preliminary definitions are given in
Sect. 2. Section 3 develops our approach and highlights the differences between
the standard approach. In Sect. 4 experimental results for an example petri
net are presented. Our discussion of Sect. 5 attempts to explain the strengths
of each approach and outlines future work. Due to space constraints, proofs
have been omitted throughout. The reader may find the proofs and an outline
of related work in the technical report [2].

2 Preliminaries

A transition system T is a pair (S,→), where S is the state space and →⊆
S×S is the transition relation. Associated with T is the predecessor function
Pred : 2S → 2S defined by Pred(X) = {y | ∃x ∈ X : y → x}. A path of T is
a sequence x0, . . . , x` over S such that for each 1 ≤ i ≤ ` we have xi−1 → xi.
The function Pred∗ : 2S → 2S is defined by

Pred∗(X) = {y | there exists a path from y to some x ∈ X}

Let N and Z denote the natural numbers and the integers, respectively.
For a vector v ∈ Zm we let v(i) denote the ith component of v for each
1 ≤ i ≤ m. The weight of v ∈ Zm is |v| =

∑m
i=1 v(i), and for any X ⊆ Nm,

denote {x ∈ X | |x| = n} by [X]n. We define a reflexive and transitive relation
� on Nm by x � y iff for all 1 ≤ i ≤ m we have x(i) ≤ y(i), and we write
x ≺ y iff x � y and x 6= y.

A broadcast protocol B is a finite set of pairs
{
(M1, c1), . . . , (M|B|, c|B|)

}
where each Mi is a m×m binary matrix with all columns being unit vectors,
and each ci is an integer vector of height m such that |ci| = 0. The semantics
of B is the transition system (Nm,→), where →⊆ Nm×Nm is such that u → v
iff v = Mu + c for some (M, c) ∈ B.

It follows that whenever u → v in a broadcast protocol we have |u| = |v|.
Intuitively, a broadcast protocol models a parameterized system consisting of
an unbounded number of identical finite state processes, where each process
has m states. A vector v ∈ Nm represents any state in which there are v(i) pro-
cesses in local state i for each 1 ≤ i ≤ m. Communication between processes
can occur as a broadcast, in which all components change state based on the
type of broadcast and the local state, along with a rendezvous-like synchro-
nization in which a bounded number of processes collaborate to change state.
These two aspects of a transition are respectively modelled by the matrix M
and the vector c of each pair (M, c) in the broadcast protocol.

In our verification problem the initial states and target (i.e. violating)
states are respectively required to be sets of the following forms. A parametric
set is I ⊆ Nm such that I = {x | x(1) ∼1 a(1) ∧ · · · ∧ x(m) ∼m a(m)}, for
some a ∈ Nm and each ∼i is either = or ≥. The vector a is called the root
vector of I. An upward-closed set [9,1] is a set U ⊆ Nm such that x ∈ U
and x � y implies y ∈ U . For X ⊆ Nm, the upward-closure of X is ↑X =

3

Bingham

previous reach := ∅
reach := gen(U)

while ¬(↑reach ⊆↑previous reach) do

if (I∩ ↑reach 6= ∅) then

exit with verification failure

previous reach := reach

reach := gen(U) ∪ basis(Pred(↑reach))

exit with verification success

Fig. 1. The standard algorithm. Here, basis(S) is used to denote some (not neces-
sarily canonical) finite basis of upward-closed set S.

{y | ∃x ∈ X : x � y}. If U is upward-closed, a basis for U is a set U b such
that U =↑U b.

A set X ⊂ Nm is canonical if for all distinct x, y ∈ X we have that x and
y are incomparable under �. It is well-known that any upward-closed set has
a canonical finite basis, and that this basis is unique. Given an upward-closed
set U , we let gen(U) denote this basis. The base-weight of an upward-closed
set U is max({|u| | u ∈ gen(U)}), denoted bw(U).

The verification problem we tackle is now defined. The Broadcast Protocol
Reachability Problem (BPRP) asks, given a broadcast protocol B, a paramet-
ric set I, and an upward-closed set U , does there exist v ∈ I and u ∈ U
such that there is a path of B from v to u? BPRP is decidable; a decision
procedure based on the standard algorithm is given by Esparza, Finkel, and
Mayr [8]. 5 Our notion of broadcast protocols subsumes petri nets in that any
algorithm to solve BPRP can be harnessed to solve a similar problem on petri
nets called the coverability problem [2].

3 Our Approach

A rendition of the standard algorithm is given in Fig. 1. On the surface, this
algorithm resembles the well-known finite state backward reachability analysis,
i.e. least fixpoint computation, the difference being that the involved sets are
upward-closed and hence infinite. The algorithm is guaranteed to converge for
well-structured transition systems such as broadcast protocols.

Our approach contrasts with the standard approach and is based on the
following observation. A broadcast protocol consists of the disjoint union
of a countably infinite number of finite transition systems (this follows from

5 Our definition of broadcast protocols differs from that of [8] in two ways. First, as a
very modest generalization, we allow rendezvous synchronizations to involve any constant
number of processes (not just 2). Second, we don’t explicitly allow for guards. Guarding
is handled indirectly via the negative components of the c vector of a transition. There is
a subtle situation wherein our approach is not as general; however this can be remedied by
adding a few more local states. Esparza et al.’s algorithm could clearly be applied to our
formalism, and vice versa.

4

Bingham

i := 1

while (¬converged) do

compute Γi := Pred∗([U]i)

if intersect check(I, Γi) then

exit with verification failure

i := i + 1

exit with verification success

Fig. 2. The skeleton of our algorithm

the fact that u → v implies |u| = |v|). For each i, one such subsystem is
obtained by restricting → to [Nm]i, and intuitively corresponds to the instance
of with i processes. Starting with i = 1, we analyze each of these subsystems
by computing Pred∗([U]i) for successive values of i and checking if this set
allows us to determine a nonempty intersection with the initial states I. If
so, there exists a path from I to U and the procedure terminates. Otherwise
i is incremented and the process repeats until we reach a certain convergence
condition.

The skeleton of our algorithm is given in Fig. 2. Omitted are the definitions
of the termination condition converged , and the function intersect check . Note
that implicit in the line “compute Γi := Pred∗([U]i)” is an inner loop that per-
forms a least fixpoint computation. However, unlike the fixpoint computation
of the standard approach (i.e. the while loop of Fig. 1), our fixpoint compu-
tations take place in finite domains (namely 2[Nm]i) and are hence amenable
to the well-known techniques of finite state symbolic model checking [4].

In Sect. 3.1 we develop a theorem that gives a necessary and sufficient con-
dition for converged , while in Sect. 3.2 we present a theorem that conveys the
appropriate definition of intersect check . Section 3.3 shows how BDDs can
be employed as the underlying data structure in our algorithm. For the re-
mainder of this section we fix an BPRP instance (B, I, U) with corresponding
transition system (Nm,→).

3.1 A Convergence Condition

In this section we present Theorem 3.2, which gives us a convergence condition
for the algorithm of Fig. 2. The formal proof is provided elsewhere [2]. How-
ever the key idea behind the proof, the notion of eager descent, is summarized
here.

Figure 3 gives a graphical depiction of the notion of eager descent. Infor-
mally, an eager descent is a path that alternates between following the tran-
sition relation → and “jumping down” to a smaller system size (i.e. weight)
through �−1. These jumps always land as low as possible while remaining in
Pred∗(U). Definition 3.1 gives the formal definition. For v ∈ Pred∗(U), define
µ(v) to be the (nonempty) set of �-minimal elements of {t | t � v}∩Pred∗(U).

5

Bingham

Pred (U)*

s

U

s

t

s

t

s

t

t

weight
increasing

0

1

1

2

2

q

0

q

Fig. 3. Eager Descent

Definition 3.1 [eager descent] An eager descent from v ∈ Pred∗(U) to an
upward-closed set U is a path e = s0, t0, s1, t1, . . . , sq, tq through the digraph
(Nm,→ ∪ �−1) such that

(i) v = s0, and

(ii) ti ∈ µ(si) for all 0 ≤ i ≤ q, and

(iii) ti → si+1 for all 0 ≤ i < q, and

(iv) si 6= sj for all 0 ≤ i < j ≤ q, and

(v) tq ∈ U

For v ∈ Zm with weight 0, the displacement of v, denoted dis(v) is the
sum of the positive components of v. It turns out that (with the exception of
the first hop) the distance each downward hop jumps is bounded by dis(c),
where c is the vector involved in the previous broadcast protocol transition.
Letting maxdis(B) = max({dis(c) | (M, c) ∈ B}), this leads to the following
result.

Theorem 3.2 (convergence) Let U be an upward-closed set and let n ≥
bw(U). Then Pred∗(U) =↑

⋃n
j=1 Pred∗([U]j) if and only if

↑Pred∗([U]n+maxdis(B)) ⊆↑Pred∗([U]n+maxdis(B)−1) ⊆ · · · ⊆↑Pred∗([U]n)(1)

Theorem 3.2 tells us that we can terminate our algorithm (Fig. 2) once we
arrive at a value of i such that (1) holds for n = i−maxdis(B). In Sect. 3.3
we will show how the set containments of (1) can be checked efficiently.

6

Bingham

3.2 Checking for Intersection with the Initial States

Another aspect of our algorithm that is yet to be defined is the function
intersection check (cf. Fig. 2). The goal of this function is to return true if
we can ascertain that Pred∗(U) ∩ I 6= ∅ by examining Pred∗([U]n). In this
section we provide a necessary and sufficient condition for this intersection
being nonempty that is fit for use in our algorithm. For Y ⊆ {1, . . . ,m},
define the partial order �Y on Nm such that v �Y u iff for all i ∈ Y we have
vi ≤ ui.

Theorem 3.3 (intersection check) Let P = {x | x1 ∼1 a1 ∧ · · · ∧ xm ∼m am}
be a parametric set, let X be an upward-closed set, and let r ≥ bw(X). Then
P ∩X = ∅ if and only if

⋃r
i=1[X]i does not contain v such that v �E a, where

E = {i |∼i is =} and a is the root vector of P .

Since I is parametric and Pred∗(U) is upward-closed, we can apply Theo-
rem 3.3 to determine if the intersection of these sets is empty. The suggested
implementation of intersection check takes Pred∗([U]n) and simply tests if
this set has a nonempty intersection with [{v | v �E a}]n. Decidability of this
problem follows from the fact that both of these sets are finite.

3.3 Using BDDs

Our discourse so far has dealt with the semantics of a broadcast protocol as
a transition system (Nm,→). As previously mentioned, broadcast protocols
model the composition of an unbounded number of identical communicating
finite state processes, i.e. a parameterized family of finite state systems [7,8].
We let L = {`1, . . . , `m} denote the local states of an individual process. For
the system instance with n processes, a concrete state is a vector g ∈ Ln, where
gi gives the local state of the ith process. A vector v ∈ Nm is said to abstract
a concrete state g ∈ L|v| if |{j | gj = `i}| = vi for each 1 ≤ i ≤ m. This
distinction between abstract and concrete states must be made; our theory
of the previous sections pertains to the former while in this section we will
instantiate our algorithm to manipulate sets of the latter. The concretization
function γ maps abstract states to sets of concrete states: given v ∈ Nm,
γ(v) is the subset of L|v| consisting of all concrete states abstracted by v. We
extend γ to work on a set A of abstract states by γ(A) =

⋃
v∈A γ(v).

Binary decision diagrams (BDDs) are a popular data structure for repre-
senting and manipulating boolean functions [3]. BDDs can be used to store
arbitrary finite sets by encoding elements using boolean variables and building
a BDD for the characteristic function, and they can also symbolize finite rela-
tions in a similar manner. Assuming some reasonable encoding of the elements
of L, we employ BDDs to represent sets of concrete states (namely the tran-
sitive preimages) and also the concrete version of the predecessor function 6

6 More accurately, there is a different Predγ BDD for each system size n

7

Bingham

i := 1

n := 1

Γ0 := ∅
while (n ≥ i−maxdis(B) ∨ i ≤ bw(U)) do

compute Γi := Pred∗
γ(γ([U]i))

if (γ([{v | v �E a}]i) ∩ Γi 6= ∅) then

exit with verification failure

if (¬(Γi ⇒ Γel
i−1)) then

n := i

i := i + 1

exit with verification success

Fig. 4. Our algorithm, version 2

Predγ, which intuitively mimics Pred in the concrete domain.

The following definition defines an operation on concrete state sets that
is integral to doing the containment checks of Theorem 3.2 when BDDs are
the underlying data structure. We use ⇒ and ⇔ to respectively denote set
containment and set equivalence between BDDs (i.e. logical implication and
logical equivalence).

Definition 3.4 [existential lifting] Let S ⊆ Ln be a set of concrete states.
Then the existential lifting Sel of S is the subset of Ln+1 such that

(c1, . . . , cn+1) ∈ Sel ⇔ ∃i ∈ {1, . . . , n + 1} : (c1, . . . , ci−1, ci+1, . . . , cn+1) ∈ S

Theorem 3.5 For X ⊆ [Nm]n and Y ⊆ [Nm]n−1, ↑X ⊆↑Y if and only if
γ(X) ⇒ γ(Y)el

Intuitively, the states of Sel are precisely those that can be transformed into a
state of S by deleting one component. The BDD for Sel can be computed from
the BDD for S. Theorem 3.5 shows how the upward-closed set containments
of the style of (1) are reduced to checking a logical implication involving
existential lifting in the concrete domain (BDDs).

Figure 4 shows a detailed version of our BDD-based algorithm. This ver-
sion elaborates on the skeleton of Fig. 2 in three (overlapping) ways: 1) it
includes the convergence condition suggested by Theorems 3.2 and 3.5, 2) it
includes a concretized version of the initial states intersection check of Theo-
rem 3.3, and 3) it processes BDDs representing concrete state sets. Note that
in Fig. 4, the Γis are now BDDs representing sets of concrete states.

Theorem 3.6 The algorithm of Fig. 4 solves BPRP.

8

Bingham

x2x1

x0

x3 xh

k

..

. ..

in
.

notin
b

a

Fig. 5. The petri net ME(h) used in the experiments

4 Experimental Results

As a proof of concept, we have implemented our algorithm as a pair of tools
translate and bucsub. bucsub implements our algorithm 7 using the CUDD
BDD package [11], and requires its input to be in SMV format. translate

takes a simple petri net description (extended to handle broadcast transitions)
and produces the necessary SMV files for bucsub; these SMV files describe
the concrete transitions systems.

To demonstrate the existence of examples for which our approach outper-
forms the standard approach, we constructed the “parameterized petri net”
ME (h) depicted in Fig. 5. This family of petri nets is motivated by our dis-
cussion of data structure size in Sect. 5. The parameter h dictates the width
of the chain of places x1, . . . , xh along the top of the figure. h allows us to
control the size of the local state space in the resulting broadcast protocol.
For any h, the initial marking of ME (h) places a single token at the place
notin, and an arbitrary number k at place x0. A token can move from x0 to
x1 when there is a token at notin by firing transition a. This will move the
token at notin to in, which will disallow any more tokens from entering x1.
The token that is in the chain can move along the chain, and at any point it
may hop back to x0, which will result in the token at in being moved back to
notin. Hence ME (h) implements mutual exclusion in that at most one token
can be in the chain at any time. For our experiments, we verified that there
can only be at most one token at xh; i.e. the upward-closed set of markings
{m | m(xh) ≥ 2} is not reachable.

We measured execution times 8 for h = 25, 50, . . . , 250; the results are
plotted in Fig. 6. The plot labelled “CST” gives the runtime for the Delzanno

7 bucsub includes an optimization not discussed in this paper; for details see section 3.4
of [2].
8 Experiments were executed on a 2.6 GHz Intel Pentium 4 machine running Red Hat
Linux 9.

9

Bingham

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250

se
co

nd
s

chain width h

CST
BDD

BDD minus translation

Fig. 6. Experiment execution times for the two approaches. The vertical axis gives
the runtime is seconds; the horizontal axis gives the petri net parameter h. Our
approach is labelled “BDD”, while the CST approach of Delzanno et al. is labelled
“CST”.

et al.s CST approach 9 [5,6]. The plot labelled “BDD” gives the total run-
time for both tools translate and bucsub, while “BDD minus translation”
provides the runtime of bucsub only. The latter is presented because the cur-
rent translate phase is suboptimal; in a sophisticated implementation there
would be no need for the intermediate SMV files and hence the time in this
phase would be highly mitigated.

From Fig. 6 we see that for ME (h) our approach is two orders of magnitude
faster than the state-of-the art implementation of the standard approach (for
large h).

5 Discussion

In this section we compare our approach with the standard approach (i.e.
CSTs) and outline future research directions.

Convergence Given two CSTs C1 and C2, the problem of checking if C1

subsumes C2 (i.e. if the upward-closed set represented by C1 is a superset of
that of C2) is co-NP hard in the size of the involved CSTs [5]. Unfortunately,
checking subsumption is an integral part of the standard algorithm (cf. the
while condition in Fig. 1). To combat this problem, Delzanno et al. develop
a sophisticated heuristic solution in which certain CST simulation relations
facilitate pruning of an (exponential time) exact subsumption check [6].

In contrast, subsumption between two BDDs can be decided in time pro-

9 In fact, the reported run-times are those of software based on interval sharing trees (IST)
which are an extension of CSTs to handle two-sided constraints [10]. The IST software used
is a constant 3 or 4 times slower than a pure CST implementation.

10

Bingham

portional to the product of their sizes [3]. In fact, we can correctly replace the
condition of the second if statement of Fig. 4 with a bidirectional subsump-
tion: ¬(Γi ⇔ Γel

i−1). This test can be done in constant time for BDDs [3].

Data structure size Another indication of the efficiency of the two algo-
rithms is the size of the underlying data structures. Predicting the dynamics
of the sizes is a complex problem. Though BDDs compactly represent many
practical boolean functions, the worst case size is exponential in their height
(i.e. the number of boolean variables). To the author’s knowledge, bounds
on the size of CST have not been derived in the literature, however, any such
bound is at least exponential in the height of the structure. Here we consider
data structure height as a course measure of worst-case size.

The height of the CSTs is fixed at |L|, while the height of the BDDs is
at most (nf + maxdis(B)) dlog2 |L|e, where nf is the final value of n in our
algorithm (which is equal to max(bw(Pred∗(U)), bw(U)) [2]). For example,
consider our petri net ME (250), where |L| = 253, nf = 4, and maxdis(B) = 2.
In this case our BDDs have height at most 48, while the CSTs have height
253. This rudimentary analysis suggests that our approach appears to have an
advantage when |L| is large and nf +maxdis(B) is modest. Thus our approach
might be more apt at dealing with large local state spaces. Unfortunately, only
the lower bound bw(U) of nf is known a priori.

Future work Clearly further comparison between our approach and
Delzanno et al.’s implementation of the standard algorithm is necessary. We
also plan on deducing the bound on the size of a BDD for Sel in terms of the
size of S for symmetric S as such a result would help further quantify the com-
plexity of our algorithm. It is likely that our method can be applied to other
discrete well-structured systems, hence we intend to pursue such extensions.

References

[1] P. Aziz Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability
theorems for infinite-state systems. In 10th Annual IEEE Symp. on Logic in
Computer Science (LICS’96), pages 313–321, 1996.

[2] J. Bingham. A new approach to upward-closed set backward reachability
analysis. Technical report, University of British Columbia Department of
Computer Science, 2004. TR-2004-07.

[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. on Computers, C-35(8):677–691, August 1986.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Conf. on Logic in
Computer Science, pages 428–439, 1990.

[5] G. Delzanno and J. F. Raskin. Symbolic representation of upward-closed
sets. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 7th Int’l Conf., pages 426–440, 2000.

11

Bingham

[6] G. Delzanno, J. F. Raskin, and L. Van Begin. Attacking symbolic state
explosion. In Proc. of 13th Int’l Conf. on Computer-Aided Verification (CAV),
pages 298–310, 2001.

[7] E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic
infinite-state systems. In 12th Annual IEEE Symp. on Logic in Computer
Science (LICS’98), pages 70–80, 1998.

[8] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols.
In 13th Annual IEEE Symp. on Logic in Computer Science (LICS’99), pages
352–359, 1999.

[9] A. Finkel and Ph. Schnoebelen. Well structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

[10] P. Ganty and L. Van Begin. Non deterministic automata for the efficient
verification of infinite-state. presented at: CP+CV Workshop at European Joint
Conferences on Theory and Practice of Software (ETAPS), 2004.

[11] F. Somenzi. Colorado university decision diagram package (CUDD) webpage.
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

12

	Introduction
	Preliminaries
	Our Approach
	A Convergence Condition
	Checking for Intersection with the Initial States
	Using BDDs

	Experimental Results
	Discussion
	References

